6,592 research outputs found

    Effect of storage media and time on fin explants culture in the goldfish, Carassius auratus

    Get PDF
    The effect of storage media and time was investigated on fin explants culture in the goldfish (Carassius auratus). Fin explants under sterile conditions were able to produce cells at different storage media and time. On the outgrowth of cells, fin explants stored for seven days before culturing showed significantly higher growth (P<0.05) as observed on the fin explants stored in Dulbecco’s modified Eagles medium (DMEM, 84.44%), phosphate buffered saline (PBS, 62.42%) and in control/fresh fin explants (100%), compared with the explants with no storage medium (25.56%) at day three of culture. From day seven to 14, all caudal fin explants exhibited a 100% outgrowth of cells regardless of treatment. However, caudal fin explants kept for 10 days in 4Β°C showed a significant difference (P<0.05) from fin explants stored in DMEM (96.67%), PBS (75.57%) and the control (100%), as compared with no storage medium (no growth) on day three. Moreover, only 6.67% of no storage medium group could maintain outgrowth of cells, while other treatment group reached 100% of outgrowth after 14 days of culture.Key words: Carassius auratus, fin explants, goldfish, storage

    Metallopanstimulin as a marker for head and neck cancer

    Get PDF
    BACKGROUND: Metallopanstimulin (MPS-1) is a ribosomal protein that is found in elevated amounts in the sera of patients with head and neck squamous cell carcinoma (HNSCC). We used a test, denoted MPS-H, which detects MPS-1 and MPS-1-like proteins, to determine the relationship between MPS-H serum levels and clinical status of patients with, or at risk for, HNSCC. PATIENTS AND METHODS: A total of 125 patients were prospectively enrolled from a university head and neck oncology clinic. Participants included only newly diagnosed HNSCC patients. Two control groups, including 25 non-smokers and 64 smokers, were studied for comparison. A total of 821 serum samples collected over a twenty-four month period were analyzed by the MPS-H radioimmunoassay. RESULTS: HNSCC, non-smokers, and smokers had average MPS-H values of 41.5 ng/mL, 10.2 ng/mL, and 12.8 ng/mL, respectively (p = 0.0001). CONCLUSION: We conclude that MPS-1 and MPS-1-like proteins are elevated in patients with HNSCC, and that MPS-H appears to be a promising marker of presence of disease and response to treatment in HNSCC patients

    Disposition of Federally Owned Surpluses

    Get PDF
    PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions

    Surveying uveitis specialistsβ€”a call for consensus

    Get PDF
    Thomas Brennan became disillusioned with popular law school rankings and so decided to survey 100 academics, judges, and lawyers on his own, asking them to rank a list of ten schools he provided. He used a composite index similar in structure, but different in content, to those used by main-stream surveyors, such as U.S. News & World Report. As expected, many of the big name schoolsβ€”Harvard, Yale, Stanfordβ€”made it to the top of the list. Penn State, as Brennan recalled, β€œ[Was] about in the middle of the pack. Maybe fifth among the 10 schools listed. ” There was one small problem, however. Penn State had no law school at the time. Brennan had included it to make a point: surveys are limited by both the quality of the questions asked and by how familiar respondents are with the subject being surveyed [1, 2]

    Tsx Produces a Long Noncoding RNA and Has General Functions in the Germline, Stem Cells, and Brain

    Get PDF
    The Tsx gene resides at the X-inactivation center and is thought to encode a protein expressed in testis, but its function has remained mysterious. Given its proximity to noncoding genes that regulate X-inactivation, here we characterize Tsx and determine its function in mice. We find that Tsx is actually noncoding and the long transcript is expressed robustly in meiotic germ cells, embryonic stem cells, and brain. Targeted deletion of Tsx generates viable offspring and X-inactivation is only mildly affected in embryonic stem cells. However, mutant embryonic stem cells are severely growth-retarded, differentiate poorly, and show elevated cell death. Furthermore, male mice have smaller testes resulting from pachytene-specific apoptosis and a maternal-specific effect results in slightly smaller litters. Intriguingly, male mice lacking Tsx are less fearful and have measurably enhanced hippocampal short-term memory. Combined, our study indicates that Tsx performs general functions in multiple cell types and links the noncoding locus to stem and germ cell development, learning, and behavior in mammals

    Novel Cytochrome P450, cyp6a17, Is Required for Temperature Preference Behavior in Drosophila

    Get PDF
    Perception of temperature is an important brain function for organisms to survive. Evidence suggests that temperature preference behavior (TPB) in Drosophila melanogaster, one of poikilothermal animals, is regulated by cAMP-dependent protein kinase (PKA) signaling in mushroom bodies of the brain. However, downstream targets for the PKA signaling in this behavior have not been identified. From a genome-wide search for the genes regulated by PKA activity in the mushroom bodies, we identified the cyp6a17 Cytochrome P450 gene as a new target for PKA. Our detailed analysis of mutants by genetic, molecular and behavioral assays shows that cyp6a17 is essential for temperature preference behavior. cyp6a17 expression is enriched in the mushroom bodies of the adult brain. Tissue-specific knockdown and rescue experiments demonstrate that cyp6a17 is required in the mushroom bodies for normal temperature preference behavior. This is the first study, to our knowledge, to show PKA-dependent expression of a cytochrome P450 gene in the mushroom bodies and its role as a key factor for temperature preference behavior. Taken together, this study reveals a new PKA-Cytochrome P450 pathway that regulates the temperature preference behavior

    Electron quantum metamaterials in van der Waals heterostructures

    Full text link
    In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques -- for example in the unique coloring of butterfly wings -- to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer sub-electron wavelength (as well as wavelength-scale) structuring of electronic matter, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures -- e.g., mechanical pick-up/transfer assembly -- atomic scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length-scales (such as electron wavelength, screening length, and electron mean free path). Yet electronic metamaterials promise far richer categories of behavior than those found in conventional optical metamaterial technologies. This is because unlike photons that scarcely interact with each other, electrons in subwavelength structured metamaterials are charged, and strongly interact. As a result, an enormous variety of emergent phenomena can be expected, and radically new classes of interacting quantum metamaterials designed

    Dual-gated bilayer graphene hot electron bolometer

    Full text link
    Detection of infrared light is central to diverse applications in security, medicine, astronomy, materials science, and biology. Often different materials and detection mechanisms are employed to optimize performance in different spectral ranges. Graphene is a unique material with strong, nearly frequency-independent light-matter interaction from far infrared to ultraviolet, with potential for broadband photonics applications. Moreover, graphene's small electron-phonon coupling suggests that hot-electron effects may be exploited at relatively high temperatures for fast and highly sensitive detectors in which light energy heats only the small-specific-heat electronic system. Here we demonstrate such a hot-electron bolometer using bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The measured large electron-phonon heat resistance is in good agreement with theoretical estimates in magnitude and temperature dependence, and enables our graphene bolometer operating at a temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We employ a pump-probe technique to directly measure the intrinsic speed of our device, >1 GHz at 10 K.Comment: 5 figure
    • …
    corecore