16 research outputs found

    The French Dialect Of Old Mines, Missouri.

    Full text link
    PhDLinguisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/180060/2/7104747.pd

    Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds

    Get PDF
    Predicting species distributions has long been a valuable tool to plan and focus efforts for biodiversity conservation, particularly because such an approach allows researchers and managers to evaluate species distribution changes in response to various threats. Utilizing data from a long-term monitoring program and land cover data sets, we modeled the probability of occupancy and colonization for 38 bird Species of Greatest Conservation Need (SGCN) in the robust design occupancy modeling framework, and used results from the best models to predict occupancy and colonization on the Iowa landscape. Bird surveys were conducted at 292 properties from April to October, 2006-2014. We calculated landscape habitat characteristics at multiple spatial scales surrounding each of our surveyed properties to be used in our models and then used kriging in ArcGIS to create predictive maps of species distributions. We validated models with data from 2013 using the area under the receiver operating characteristic curve (AUC). Probability of occupancy ranged from 0.001 (SE 0.70). The most important predictor for occupancy of grassland birds was percentage of the landscape in grassland habitat, and the most important predictor for woodland birds was percentage of the landscape in woodland habitat. This emphasizes the need for managers to restore specific habitats on the landscape. In an era during which funding continues to decrease for conservation agencies, our approach aids in determining where to focus limited resources to best conserve bird species of conservation concern

    Efficacy of Visual Surveys for White-Nose Syndrome at Bat Hibernacula

    Get PDF
    White-Nose Syndrome (WNS) is an epizootic disease in hibernating bats caused by the fungus Pseudogymnoascus destructans. Surveillance for P. destructans at bat hibernacula consists primarily of visual surveys of bats, collection of potentially infected bats, and submission of these bats for laboratory testing. Cryptic infections (bats that are infected but display no visual signs of fungus) could lead to the mischaracterization of the infection status of a site and the inadvertent spread of P. destructans. We determined the efficacy of visual detection of P. destructans by examining visual signs and molecular detection of P. destructans on 928 bats of six species at 27 sites during surveys conducted from January through March in 2012-2014 in the southeastern USA on the leading edge of the disease invasion. Cryptic infections were widespread with 77% of bats that tested positive by qPCR showing no visible signs of infection. The probability of exhibiting visual signs of infection increased with sampling date and pathogen load, the latter of which was substantially higher in three species (Myotis lucifugus, M. septentrionalis, and Perimyotis subflavus). In addition, M. lucifugus was more likely to show visual signs of infection than other species given the same pathogen load. Nearly all infections were cryptic in three species (Eptesicus fuscus, M. grisescens, and M. sodalis), which had much lower fungal loads. The presence of M. lucifugus or M. septentrionalis at a site increased the probability that P. destructans was visually detected on bats. Our results suggest that cryptic infections of P. destructans are common in all bat species, and visible infections rarely occur in some species. However, due to very high infection prevalence and loads in some species, we estimate that visual surveys examining at least 17 individuals of M. lucifugus and M. septentrionalis, or 29 individuals of P. subflavus are still effective to determine whether a site has bats infected with P. destructans. In addition, because the probability of visually detecting the fungus was higher later in winter, surveys should be done as close to the end of the hibernation period as possible
    corecore