234 research outputs found
Clinical Hemodynamics and Pharmacodynamics of Toxemia
For many years toxemia has served as a wastebasket for a variety of disease states characterized by an elevated arterial pressure, edema, and albuminuria. Whereas this triad is consistent with the diagnosis of toxemia, it is not diagnostic. Besides toxemia, these abnormalities may be found in pregnant patients with hypertensive vascular disease, pyelonephritis, glomerulonephritis, or any combination of these. Data derived from studies performed on patients with such a variety of disease entities have obviously been confusing. It makes a lot of difference, for example, whether the subjects studied had chronic pyelonephritis or acute vasospastic toxemia. During the past 13 years, our group has attempted to cut the pie of elevated arterial pressure, albuminuria, and edema into separate and distinct diagnostic pieces. Ophthalmoscopic examination and urinalysis have been of great help in this regard (Finnerty, 1954, 1956 and 1965; Finnerty et al., 1960)
The Role of Northeast Ohio Central Cities in the Regional Economy, 2000-2007
This report examines the four central cities in Northeast Ohio – Akron, Canton, Cleveland, and Youngstown — in the context of their metropolitan areas. A central city is the largest or most important city of a metropolitan area. A metropolitan area combines a large city with adjacent urbanized areas and peripheral areas that are closely bound to the center with strong ties to commuting, commerce, and a common labor market
The Role of Northeast Ohio Central Cities in the Regional Economy, 2000-2007
This report examines the four central cities in Northeast Ohio – Akron, Canton, Cleveland, and Youngstown — in the context of their metropolitan areas. A central city is the largest or most important city of a metropolitan area. A metropolitan area combines a large city with adjacent urbanized areas and peripheral areas that are closely bound to the center with strong ties to commuting, commerce, and a common labor market
Changing Hydrozoan Bauplans by Silencing Hox-Like Genes
Regulatory genes of the Antp class have been a major factor for the invention and radiation of animal bauplans. One of the most diverse animal phyla are the Cnidaria, which are close to the root of metazoan life and which often appear in two distinct generations and a remarkable variety of body forms. Hox-like genes have been known to be involved in axial patterning in the Cnidaria and have been suspected to play roles in the genetic control of many of the observed bauplan changes. Unfortunately RNAi mediated gene silencing studies have not been satisfactory for marine invertebrate organisms thus far. No direct evidence supporting Hox-like gene induced bauplan changes in cnidarians have been documented as of yet. Herein, we report a protocol for RNAi transfection of marine invertebrates and demonstrate that knock downs of Hox-like genes in Cnidaria create substantial bauplan alterations, including the formation of multiple oral poles (“heads”) by Cnox-2 and Cnox-3 inhibition, deformation of the main body axis by Cnox-5 inhibition and duplication of tentacles by Cnox-1 inhibition. All phenotypes observed in the course of the RNAi studies were identical to those obtained by morpholino antisense oligo experiments and are reminiscent of macroevolutionary bauplan changes. The reported protocol will allow routine RNAi studies in marine invertebrates to be established
Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis
BACKGROUND: Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no “true” Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in “dorsoventral” patterning. CONCLUSIONS/SIGNIFICANCE: A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today
Are Hox Genes Ancestrally Involved in Axial Patterning? Evidence from the Hydrozoan Clytia hemisphaerica (Cnidaria)
Background: The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code' predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. Methodology/Principal Findings: Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oralaboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. Conclusions/Significance: Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations
Two Alleles of NF-κB in the Sea Anemone Nematostella vectensis Are Widely Dispersed in Nature and Encode Proteins with Distinct Activities
BACKGROUND. NF-κB is an evolutionarily conserved transcription factor that controls the expression of genes involved in many key organismal processes, including innate immunity, development, and stress responses. NF-κB proteins contain a highly conserved DNA-binding/dimerization domain called the Rel homology domain. METHODS/PRINCIPAL FINDINGS. We characterized two NF-κB alleles in the sea anemone Nematostella vectensis that differ at nineteen single-nucleotide polymorphisms (SNPs). Ten of these SNPs result in amino acid substitutions, including six within the Rel homology domain. Both alleles are found in natural populations of Nematostella. The relative abundance of the two NF-κB alleles differs between populations, and departures from Hardy-Weinberg equilibrium within populations indicate that the locus may be under selection. The proteins encoded by the two Nv-NF-κB alleles have different molecular properties, in part due to a Cys/Ser polymorphism at residue 67, which resides within the DNA recognition loop. In nearly all previously characterized NF-κB proteins, the analogous residue is fixed for Cys, and conversion of human RHD proteins from Cys to Ser at this site has been shown to increase DNA-binding ability and increase resistance to inhibition by thiol-reactive compounds. However, the naturally-occurring Nematostella variant with Cys at position 67 binds DNA with a higher affinity than the Ser variant. On the other hand, the Ser variant activates transcription in reporter gene assays more effectively, and it is more resistant to inhibition by a thiol-reactive compound. Reciprocal Cys<->Ser mutations at residue 67 of the native Nv-NF-κB proteins affect DNA binding as in human NF-κB proteins, e.g., a Cys->Ser mutation increases DNA binding of the native Cys variant. CONCLUSIONS/SIGNIFICANCE. These results are the first demonstration of a naturally occurring and functionally significant polymorphism in NF-κB in any species. The functional differences between these alleles and their uneven distribution in the wild suggest that different genotypes could be favored in different environments, perhaps environments that vary in their levels of peroxides or thiol-reactive compounds.National Institutes of Health (CA047763); National Science Foundation (FP-91656101-0); Environmental Protection Agency (F5E11155); Conservation International Marine Management Area Science Program; Boston University (SPRInG grant); Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution; The Beacon Institute for Rivers and Estuaries; the J Seward Johnson Fund; Boston University (5 P42 ES07381
Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury
Background: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings: Male balb/c mice were assigned randomly to either sham burn (control) or 30 % total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression
Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.)
Versión del editor
Exceptionally Preserved Jellyfishes from the Middle Cambrian
Cnidarians represent an early diverging animal group and thus insight into their origin and diversification is key to understanding metazoan evolution. Further, cnidarian jellyfish comprise an important component of modern marine planktonic ecosystems. Here we report on exceptionally preserved cnidarian jellyfish fossils from the Middle Cambrian (∼505 million years old) Marjum Formation of Utah. These are the first described Cambrian jellyfish fossils to display exquisite preservation of soft part anatomy including detailed features of structures interpreted as trailing tentacles and subumbrellar and exumbrellar surfaces. If the interpretation of these preserved characters is correct, their presence is diagnostic of modern jellyfish taxa. These new discoveries may provide insight into the scope of cnidarian diversity shortly after the Cambrian radiation, and would reinforce the notion that important taxonomic components of the modern planktonic realm were in place by the Cambrian period
- …