1,489 research outputs found

    A multiparametric alternative to short inversion-time inversion recovery for imaging inflammation: T2water and fat fraction measurement using chemical shift–encoded turbo spin-echo MRI

    Get PDF
    Purpose: Short-inversion-time inversion-recovery MRI is used widely for imaging bone and soft-tissue inflammation in rheumatic inflammatory diseases, but there is no widely available quantitative equivalent of this sequence. This limits our ability to objectively assess inflammation and distinguish it from other processes. To address this, we investigate the use of the widely available Dixon turbo spin echo (TSE Dixon) sequence as a practical approach to simultaneous water-specific T2 (T2water) and fat fraction (FF) measurement.// Methods: We use a series of TSE Dixon acquisitions with varying effective TEs (TEeff) to quantify T2water and FF. The validity of this approach is assessed in a series of phantom and in vivo experiments, with reference values provided by Carr-Purcell-Meiboom-Gill acquisitions, MRS, and phantoms. The effect of inflammation on parameter values is evaluated in patients with spondyloarthritis.// Results: The T2water estimates obtained from TSE Dixon were accurate compared with the reference values from Carr-Purcell-Meiboom-Gill and spectroscopy in both fat-free environments and in the presence of fat. FF measurements with T2water correction from TSE Dixon were accurate from 0% to 60% FF and were not confounded by T2water variations. In vivo imaging produced good quality images that were artifact free, produced plausible T2 values, separating and quantifying the effect of inflammation on T2water and FF.// Conclusion: The T2water and FF measurements based on TSE Dixon with effective TE increments are accurate over a range of T2 and FF values and could provide a widely available quantitative alternative to the short-inversion-time inversion-recovery sequence for imaging inflamed tissue

    Volume of hyperintense inflammation (VHI): A quantitative imaging biomarker of inflammation load in spondyloarthritis, enabled by human-machine cooperation

    Get PDF
    Qualitative visual assessment of MRI scans is a key mechanism by which inflammation is assessed in clinical practice. For example, in axial spondyloarthritis (axSpA), visual assessment focuses on the identification of regions with increased signal in the bone marrow, known as bone marrow oedema (BMO), on water-sensitive images. The identification of BMO has an important role in the diagnosis, quantification and monitoring of disease in axSpA. However, BMO evaluation depends heavily on the experience and expertise of the image reader, creating substantial imprecision. Deep learning-based segmentation is a natural approach to addressing this imprecision, but purely automated solutions require large training sets that are not currently available, and deep learning solutions with limited data may not be sufficiently trustworthy for use in clinical practice. To address this, we propose a workflow for inflammation segmentation incorporating both deep learning and human input. With this ‘human-machine cooperation’ workflow, a preliminary segmentation is generated automatically by deep learning; a human reader then ‘cleans’ the segmentation by removing extraneous segmented voxels. The final cleaned segmentation defines the volume of hyperintense inflammation (VHI), which is proposed as a quantitative imaging biomarker (QIB) of inflammation load in axSpA. We implemented and evaluated the proposed human-machine workflow in a cohort of 29 patients with axSpA who had undergone prospective MRI scans before and after starting biologic therapy. The performance of the workflow was compared against purely visual assessment in terms of inter-observer/inter-method segmentation overlap, inter-observer agreement and assessment of response to biologic therapy. The human-machine workflow showed superior inter-observer segmentation overlap than purely manual segmentation (Dice score 0.84 versus 0.56). VHI measurements produced by the workflow showed similar or better inter-observer agreement than visual scoring, with similar response assessments. We conclude that the proposed human-machine workflow offers a mechanism to improve the consistency of inflammation assessment, and that VHI could be a valuable QIB of inflammation load in axSpA, as well as offering an exemplar of human-machine cooperation more broadly

    Calcification of intervertebral discs in the dachshund: a radiographic and histopathologic study of 20 dogs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the study was to compare radiographic and histopathologic findings with regard to number and extent of calcified discs in the dachshund.</p> <p>Methods</p> <p>The intervertebral discs of 20 dachshunds were subjected to a radiographic and histopathologic examination. The dogs were selected randomly from clinical cases euthanased for reasons unrelated to research at the Norwegian School of Veterinary Science. Lateral radiographs were taken of the vertebral columns after removing them from the carcasses. The histopathologic examination included 5 μm thick sections in the transverse plane, stained with hematoxylin-eosin and von Kossa. Radiographs and histological sections were evaluated independently.</p> <p>Results</p> <p>A total of 148 (28.5%) calcified discs were identified at the radiographic and 230 (45.7%) at the histopathologic examination. Of 92 discs found to be calcified by histopathology, but not by radiography, the degree of calcification was evaluated as 'slight' in 84 (91.3%). All the intervertebral discs (n = 138) that were found to be calcified by radiography were also found to be calcified by histopathology.</p> <p>Conclusion</p> <p>A sensitivity of 0.6 and specificity of 1.0 for radiography was calculated when using histopathology as the gold standard.</p

    Quantitative magnetic resonance imaging (qMRI) in Axial Spondyloarthritis

    Get PDF
    Imaging, and particularly magnetic resonance imaging (MRI), plays a crucial role in the assessment of inflammation in rheumatic disease, and forms a core component of the diagnostic pathway in axial spondyloarthritis (axSpA). However, conventional imaging techniques are limited by image contrast being non-specific to inflammation and a reliance on subjective, qualitative reader interpretation. Quantitative MRI (qMRI) methods offer scope to address these limitations and improve our ability to accurately and precisely detect and characterise inflammation, potentially facilitating a more personalised approach to management. Here, we review qMRI methods and emerging quantitative imaging biomarkers (QIBs) for imaging inflammation in axSpA. We discuss the potential benefits as well as the practical considerations that must be addressed in the movement toward clinical translation of QIBs

    The Value of Success: Acquiring Gains, Avoiding Losses, and Simply Being Successful

    Get PDF
    A large network of spatially contiguous, yet anatomically distinct regions in medial frontal cortex is involved in reward processing. Although it is clear these regions play a role in critical aspects of reward-related learning and decision-making, the individual contributions of each component remains unclear. We explored dissociations in reward processing throughout several key regions in the reward system and aimed to clarify the nature of previously observed outcome-related activity in a portion of anterior medial orbitofrontal cortex (mOFC). Specifically, we tested whether activity in anterior mOFC was related to processing successful actions, such that this region would respond similarly to rewards with and without tangible benefits, or whether this region instead encoded only quantifiable outcome values (e.g., money). Participants performed a task where they encountered monetary gains and losses (and non-gains and non-losses) during fMRI scanning. Critically, in addition to the outcomes with monetary consequences, the task included trials that provided outcomes without tangible benefits (participants were simply told that they were correct or incorrect). We found that anterior mOFC responded to all successful outcomes regardless of whether they carried tangible benefits (monetary gains and non-losses) or not (controls). These results support the hypothesis that anterior mOFC processes rewards in terms of a common currency and is capable of providing reward-based signals for everything we value, whether it be primary or secondary rewards or simply a successful experience without objectively quantifiable benefits

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3

    Regions of High Out-Of-Hospital Cardiac Arrest Incidence and Low Bystander CPR Rates in Victoria, Australia

    Get PDF
    BACKGROUND: Out-of-hospital cardiac arrest (OHCA) remains a major public health issue and research has shown that large regional variation in outcomes exists. Of the interventions associated with survival, the provision of bystander CPR is one of the most important modifiable factors. The aim of this study is to identify census areas with high incidence of OHCA and low rates of bystander CPR in Victoria, Australia. METHODS: We conducted an observational study using prospectively collected population-based OHCA data from the state of Victoria in Australia. Using ArcGIS (ArcMap 10.0), we linked the location of the arrest using the dispatch coordinates (longitude and latitude) to Victorian Local Government Areas (LGAs). We used Bayesian hierarchical models with random effects on each LGA to provide shrunken estimates of the rates of bystander CPR and the incidence rates. RESULTS: Over the study period there were 31,019 adult OHCA attended, of which 21,436 (69.1%) cases were of presumed cardiac etiology. Significant variation in the incidence of OHCA among LGAs was observed. There was a 3 fold difference in the incidence rate between the lowest and highest LGAs, ranging from 38.5 to 115.1 cases per 100,000 person-years. The overall rate of bystander CPR for bystander witnessed OHCAs was 62.4%, with the rate increasing from 56.4% in 2008-2010 to 68.6% in 2010-2013. There was a 25.1% absolute difference in bystander CPR rates between the highest and lowest LGAs. CONCLUSION: Significant regional variation in OHCA incidence and bystander CPR rates exists throughout Victoria. Regions with high incidence and low bystander CPR participation can be identified and would make suitable targets for interventions to improve CPR participation rates
    • …
    corecore