174 research outputs found
Chemical potential oscillations from a single nodal pocket in the underdoped high-Tc superconductor YBa2Cu3O6+x
The mystery of the normal state in the underdoped cuprates has deepened with
the use of newer and complementary experimental probes. While photoemission
studies have revealed solely `Fermi arcs' centered on nodal points in the
Brillouin zone at which holes aggregate upon doping, more recent quantum
oscillation experiments have been interpreted in terms of an ambipolar Fermi
surface, that includes sections containing electron carriers located at the
antinodal region. To address the question of whether an ambipolar Fermi surface
truly exists, here we utilize measurements of the second harmonic quantum
oscillations, which reveal that the amplitude of these oscillations arises
mainly from oscillations in the chemical potential, providing crucial
information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In
particular, the detailed relationship between the second harmonic amplitude and
the fundamental amplitude of the quantum oscillations leads us to the
conclusion that there exists only a single underlying quasi-two dimensional
Fermi surface pocket giving rise to the multiple frequency components observed
via the effects of warping, bilayer splitting and magnetic breakdown. A range
of studies suggest that the pocket is most likely associated with states near
the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high
magnetic fields.Comment: 7 pages, 4 figure
Field-induced quantum fluctuations in the heavy fermion superconductor CeCu2Ge2
Quantum-mechanical fluctuations in strongly correlated electron systems cause
unconventional phenomena such as non-Fermi liquid behavior, and arguably high
temperature superconductivity. Here we report the discovery of a field-tuned
quantum critical phenomenon in stoichiometric CeCu2Ge2, a spin density wave
ordered heavy fermion metal that exhibits unconventional superconductivity
under ~ 10 GPa of applied pressure. Our finding of the associated quantum
critical spin fluctuations of the antiferromagnetic spin density wave order,
dominating the local fluctuations due to single-site Kondo effect, provide new
information about the underlying mechanism that can be important in
understanding superconductivity in this novel compound.Comment: Heavy Fermion, Quantum Critical Phenomeno
Enhancement of the Nernst effect by stripe order in a high-Tc superconductor
The Nernst effect in metals is highly sensitive to two kinds of phase
transition: superconductivity and density-wave order. The large positive Nernst
signal observed in hole-doped high-Tc superconductors above their transition
temperature Tc has so far been attributed to fluctuating superconductivity.
Here we show that in some of these materials the large Nernst signal is in fact
caused by stripe order, a form of spin / charge modulation which causes a
reconstruction of the Fermi surface. In LSCO doped with Nd or Eu, the onset of
stripe order causes the Nernst signal to go from small and negative to large
and positive, as revealed either by lowering the hole concentration across the
quantum critical point in Nd-LSCO, or lowering the temperature across the
ordering temperature in Eu-LSCO. In the latter case, two separate peaks are
resolved, respectively associated with the onset of stripe order at high
temperature and superconductivity near Tc. This sensitivity to Fermi-surface
reconstruction makes the Nernst effect a promising probe of broken symmetry in
high-Tc superconductors
Dynamics and transport near quantum-critical points
The physics of non-zero temperature dynamics and transport near
quantum-critical points is discussed by a detailed study of the O(N)-symmetric,
relativistic, quantum field theory of a N-component scalar field in spatial
dimensions. A great deal of insight is gained from a simple, exact solution of
the long-time dynamics for the N=1 d=1 case: this model describes the critical
point of the Ising chain in a transverse field, and the dynamics in all the
distinct, limiting, physical regions of its finite temperature phase diagram is
obtained. The N=3, d=1 model describes insulating, gapped, spin chain
compounds: the exact, low temperature value of the spin diffusivity is
computed, and compared with NMR experiments. The N=3, d=2,3 models describe
Heisenberg antiferromagnets with collinear N\'{e}el correlations, and
experimental realizations of quantum-critical behavior in these systems are
discussed. Finally, the N=2, d=2 model describes the superfluid-insulator
transition in lattice boson systems: the frequency and temperature dependence
of the the conductivity at the quantum-critical coupling is described and
implications for experiments in two-dimensional thin films and inversion layers
are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical
properties of unconventional magnetic systems", Geilo, Norway, April 2-12,
1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be
published. 46 page
Polarons and confinement of electronic motion to two dimensions in a layered transition metal oxide
A very remarkable feature of the layered transition metal oxides (TMOs),
whose most famous members are the high-temperature superconductors (HTSs), is
that even though they are prepared as bulk three-dimensional single crystals,
they display hugely anisotropic electrical and optical properties, seeming to
be insulating perpendicular to the layers and metallic within them. This is the
phenomenon of confinement, a concept at odds with the conventional theory of
solids and recognized as due to magnetic and electron-lattice interactions in
the layers which must be overcome at a substantial energy cost if electrons are
to be transferred between layers. The associated energy gap or 'pseudogap' is
particularly obvious in experiments where charge is moved perpendicular to the
planes, most notably scanning tunneling microscopy (STM) and polarized infrared
spectroscopy. Here, using the same experimental tools, we show that there is a
second family of TMOs - the layered manganites La2-2xSr1+2xMn2O7 (LSMO) - with
even more extreme confinement and pseudogap effects. The data, which are the
first to resolve atoms in any metallic manganite, demonstrate quantitatively
that because they are attached to polarons - lattice and spin textures within
the planes -, it is equally difficult to remove carriers from the planes via
vacuum tunneling into a conventional metallic tip, as it is for them to move
between Mn-rich layers within the material itself
Magnetic-field-induced charge-stripe order in the high temperature superconductor YBa2Cu3Oy
Electronic charges introduced in copper-oxide planes generate high-transition
temperature superconductivity but, under special circumstances, they can also
order into filaments called stripes. Whether an underlying tendency of charges
to order is present in all cuprates and whether this has any relationship with
superconductivity are, however, two highly controversial issues. In order to
uncover underlying electronic orders, magnetic fields strong enough to
destabilise superconductivity can be used. Such experiments, including quantum
oscillations in YBa2Cu3Oy (a notoriously clean cuprate where charge order is
not observed) have suggested that superconductivity competes with spin, rather
than charge, order. Here, using nuclear magnetic resonance, we demonstrate that
high magnetic fields actually induce charge order, without spin order, in the
CuO2 planes of YBa2Cu3Oy. The observed static, unidirectional, modulation of
the charge density breaks translational symmetry, thus explaining quantum
oscillation results, and we argue that it is most likely the same 4a-periodic
modulation as in stripe-ordered cuprates. The discovery that it develops only
when superconductivity fades away and near the same 1/8th hole doping as in
La2-xBaxCuO4 suggests that charge order, although visibly pinned by CuO chains
in YBa2Cu3Oy, is an intrinsic propensity of the superconducting planes of high
Tc cuprates.Comment: For a final version, see
http://www.nature.com/nature/journal/v477/n7363/full/nature10345.htm
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Enhancing medical students' communication skills: development and evaluation of an undergraduate training program
<p>Abstract</p> <p>Background</p> <p>There is a relative lack of current research on the effects of specific communication training offered at the beginning of the medical degree program. The newly developed communication training "Basics and Practice in Communication Skills" was pilot tested in 2008 and expanded in the following year at the University Medical Centre Hamburg-Eppendorf in Germany. The goal was to promote and improve the communicative skills of participants and show the usefulness of an early offered intervention on patient-physician communication within the medical curriculum.</p> <p>Methods</p> <p>The students participating in the project and a comparison group of students from the standard degree program were surveyed at the beginning and end of the courses. The survey consisted of a self-assessment of their skills as well as a standardised expert rating and an evaluation of the modules by means of a questionnaire.</p> <p>Results</p> <p>Students who attended the communication skills course exhibited a considerable increase of communication skills in this newly developed training. It was also observed that students in the intervention group had a greater degree of self-assessed competence following training than the medical students in the comparison group. This finding is also reflected in the results from a standardised objective measure.</p> <p>Conclusions</p> <p>The empirical results of the study showed that the training enabled students to acquire specialised competence in communication through the course of a newly developed training program. These findings will be used to establish new communication training at the University Medical Centre Hamburg-Eppendorf.</p
- …