2,455 research outputs found
Adaptation or constraint? Reference-dependent scatter in honey bee dances
The waggle dance of the honey bee is used to recruit nest mates to a resource. Dancer bees, however, may indicate many directions within a single dance bout; we show that this scatter in honey bee dances is strongly dependent on the sensory modality used to determine a reference angle in the dance. Dances with a visual reference are more precise than those with a gravity reference. This finding undermines the idea that scatter is introduced into dances, which the bees could perform more precisely, in order to spread recruits out over resource patches. It also calls into question reported interspecific differences that had been interpreted as adaptations of the dance to different habitats. Our results support a non-adaptive hypothesis: that dance scatter results from sensory and performance constraints, rather than modulation of the scatter by the dancing bee. However, an alternative adaptive hypothesis cannot be ruled out
How early can myocardial iron overload occur in Beta thalassemia major?
BACKGROUND: Myocardial siderosis is the most common cause of death in patients with beta thalassemia major(TM). This study aimed at investigating the occurrence, prevalence and severity of cardiac iron overload in a young Chinese population with beta TM.
METHODS AND RESULTS: We analyzed T2* cardiac magnetic resonance (CMR), left ventricular ejection fraction (LVEF) and serum ferritin (SF) in 201 beta TM patients. The median age was 9 years old. Patients received an average of 13 units of blood per year. The median SF level was 4536 ng/ml and 165 patients (82.1%) had SF>2500 ng/ml. Myocardial iron overload was detected in 68 patients (33.8%) and severe myocardial iron overload was detected in 26 patients (12.6%). Twenty-two patients ≤10 years old had myocardial iron overload, three of whom were only 6 years old. No myocardial iron overload was detected under the age of 6 years. Median LVEF was 64% (measured by CMR in 175 patients). Five of 6 patients with a LVEF<56% and 8 of 10 patients with cardiac disease had myocardial iron overload.
CONCLUSIONS: The TM patients under follow-up at this regional centre in China patients are younger than other reported cohorts, more poorly-chelated, and have a high burden of iron overload. Myocardial siderosis occurred in patients younger than previously reported, and was strongly associated with impaired LVEF and cardiac disease. For such poorly-chelated TM patients, our data shows that the first assessment of cardiac T2* should be performed as early as 6 years old
Evolution of reproductive development in the volvocine algae
The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male–female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ–soma division of labor and male–female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed
Mechanism of active K + secretion by flounder urinary bladder
We investigated the mechanism of active K + transport by the urinary bladder of the winter flounder by measuring transepithelial properties in Ussing Chambers and by determining the cellular electrical potential profile using conventional microelectrodes. In the absence of transmural electrochemical potential gradients isolated bladders can exhibit a serosa-to-mucosa short circuit which is due entirely to net K + secretion. The properties of transcellular K + movement can be adequately described by a model which provides for active K + uptake across the basolateral membrane via an electrogenic Na/K ATPase and K + exit from the cell across the apical membrane down an electrochemical potential gradient via K + channels which are blocked by mucosal barium. The conductance of the apical membranes of the transporting cells appears to be due almost solely to K + while that of the basolateral membrane may be due largely to Cl − .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47455/1/424_2004_Article_BF00585048.pd
Interstellar Turbulence II: Implications and Effects
Interstellar turbulence has implications for the dispersal and mixing of the
elements, cloud chemistry, cosmic ray scattering, and radio wave propagation
through the ionized medium. This review discusses the observations and theory
of these effects. Metallicity fluctuations are summarized, and the theory of
turbulent transport of passive tracers is reviewed. Modeling methods, turbulent
concentration of dust grains, and the turbulent washout of radial abundance
gradients are discussed. Interstellar chemistry is affected by turbulent
transport of various species between environments with different physical
properties and by turbulent heating in shocks, vortical dissipation regions,
and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered
and accelerated in turbulent magnetic waves and shocks, and they generate
turbulence on the scale of their gyroradii. Radio wave scintillation is an
important diagnostic for small scale turbulence in the ionized medium, giving
information about the power spectrum and amplitude of fluctuations. The theory
of diffraction and refraction is reviewed, as are the main observations and
scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and
Astrophysic
Delay aversion but preference for large and rare rewards in two choice tasks: implications for the measurement of self-control parameters
BACKGROUND: Impulsivity is defined as intolerance/aversion to waiting for reward. In intolerance-to-delay (ID) protocols, animals must choose between small/soon (SS) versus large/late (LL) rewards. In the probabilistic discount (PD) protocols, animals are faced with choice between small/sure (SS) versus large/luck-linked (LLL) rewards. It has been suggested that PD protocols also measure impulsivity, however, a clear dissociation has been reported between delay and probability discounting. RESULTS: Wistar adolescent rats (30- to 46-day-old) were tested using either protocol in drug-free state. In the ID protocol, animals showed a marked shift from LL to SS reward when delay increased, and this despite adverse consequences on the total amount of food obtained. In the PD protocol, animals developed a stable preference for LLL reward, and maintained it even when SS and LLL options were predicted and demonstrated to become indifferent. We demonstrate a clear dissociation between these two protocols. In the ID task, the aversion to delay was anti-economical and reflected impulsivity. In the PD task, preference for large reward was maintained despite its uncertain delivery, suggesting a strong attraction for unitary rewards of great magnitude. CONCLUSION: Uncertain delivery generated no aversion, when compared to delays producing an equivalent level of large-reward rarefaction. The PD task is suggested not to reflect impulsive behavior, and to generate patterns of choice that rather resemble the features of gambling. In summary, present data do indicate the need to interpret choice behavior in ID and PD protocols differently
Static condensation optimal port/interface reduction and error estimation for structural health monitoring
Having the application in structural health monitoring in mind, we propose
reduced port spaces that exhibit an exponential convergence for static
condensation procedures on structures with changing geometries for instance
induced by newly detected defects. Those reduced port spaces generalize the
port spaces introduced in [K. Smetana and A.T. Patera, SIAM J. Sci. Comput.,
2016] to geometry changes and are optimal in the sense that they minimize the
approximation error among all port spaces of the same dimension. Moreover, we
show numerically that we can reuse port spaces that are constructed on a
certain geometry also for the static condensation approximation on a
significantly different geometry, making the optimal port spaces well suited
for use in structural health monitoring
There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator
Höhn S, Hallmann A. There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator. BMC Biology. 2011;9(1): 89.Background:
Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out?
Results:
In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri.
Conclusions:
Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator
- …