14 research outputs found
FRA2A is a CGG repeat expansion associated with silencing of AFF3
Folate-sensitive fragile sites (FSFS) are a rare cytogenetically visible subset of dynamic mutations. Of the eight molecularly characterized FSFS, four are associated with intellectual disability (ID). Cytogenetic expression results from CGG tri-nucleotide-repeat expansion mutation associated with local CpG hypermethylation and transcriptional silencing. The best studied is the FRAXA site in the FMR1 gene, where large expansions cause fragile X syndrome, the most common inherited ID syndrome. Here we studied three families with FRA2A expression at 2q11 associated with a wide spectrum of neurodevelopmental phenotypes. We identified a polymorphic CGG repeat in a conserved, brain-active alternative promoter of the AFF3 gene, an autosomal homolog of the X-linked AFF2/FMR2 gene: Expansion of the AFF2 CGG repeat causes FRAXE ID. We found that FRA2A-expressing individuals have mosaic expansions of the AFF3 CGG repeat in the range of several hundred repeat units. Moreover, bisulfite sequencing and pyrosequencing both suggest AFF3 promoter hypermethylation. cSNP-analysis demonstrates monoallelic expression of the AFF3 gene in FRA2A carriers thus predicting that FRA2A expression results in functional haploinsufficiency for AFF3 at least in a subset of tissues. By whole-mount in situ hybridization the mouse AFF3 ortholog shows strong regional expression in the developing brain, somites and limb buds in 9.5-12.5dpc mouse embryos. Our data suggest that there may be an association between FRA2A and a delay in the acquisition of motor and language skills in the families studied here. However, additional cases are required to firmly establish a causal relationship
Mutations in HYAL2, Encoding Hyaluronidase 2, Cause a Syndrome of Orofacial Clefting and Cor Triatriatum Sinister in Humans and Mice.
Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development
Systematic analysis of copy number variants of a large cohort of orofacial cleft patients identifies candidate genes for orofacial clefts
Accessibility Challenges in Mobile Learning
Mobile Learning opens up a wide variety of opportunities to deliver learning new and exciting ways (Adoption of Mobile Technology in Higher Education, an Introduction). Making learning accessible is a challenge for educators regardless of the medium or platform with which they are working. This chapter looks at some of the accessibility challenges which educators face when moving to mobile delivery.
In some situations the use of mobile delivery opens up the education experience to being far more accessible to a wide range of learners than more traditional delivery style. However, it is frequently seen that whilst adopting mobile delivery is beneficial to one group of learners, it is likely to be problematic for another.
This chapter briefly considers what accessibility means and why it is important, before going on to consider the types of challenges which educational developers and teachers should be aware of when designing resources, in order to maximize accessibility.
It does not attempt to address every single accessibility issue and potential adjustment, but to encourage the reader to consider a range of issues their learners may face and to raise awareness of how particular delivery choices may affect potential learner engagement. There is also an acknowledgement that it may not be possible to cater to all learners using a single delivery solution. Where there is conflict between the needs of different groups, in terms of usability, it may be appropriate to offer multiple ways for students to engage with the learning, instead of attempting to make every activity fully accessible
Monoallelic and biallelic mutations in MAB21L2 cause a spectrum of major eye malformations.
We identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.Arg51Cys]) in unrelated children with bilateral anophthalmia, intellectual disability, and rhizomelic skeletal dysplasia. c.152G>A (p.Arg51His) segregated with autosomal-dominant bilateral colobomatous microphthalmia in a large multiplex family. The fourth heterozygous mutation (c.145G>A [p.Glu49Lys]) affected an amino acid within two residues of Arg51 in an adult male with bilateral colobomata. In a fifth family, a homozygous mutation (c.740G>A [p.Arg247Gln]) altering a different region of the protein was identified in two male siblings with bilateral retinal colobomata. In mouse embryos, Mab21l2 showed strong expression in the developing eye, pharyngeal arches, and limb bud. As predicted by structural homology, wild-type MAB21L2 bound single-stranded RNA, whereas this activity was lost in all altered forms of the protein. MAB21L2 had no detectable nucleotidyltransferase activity in vitro, and its function remains unknown. Induced expression of wild-type MAB21L2 in human embryonic kidney 293 cells increased phospho-ERK (pERK1/2) signaling. Compared to the wild-type and p.Arg247Gln proteins, the proteins with the Glu49 and Arg51 variants had increased stability. Abnormal persistence of pERK1/2 signaling in MAB21L2-expressing cells during development is a plausible pathogenic mechanism for the heterozygous mutations. The phenotype associated with the homozygous mutation might be a consequence of complete loss of MAB21L2 RNA binding, although the cellular function of this interaction remains unknown
