58 research outputs found

    Erythrocytes lacking the Langereis blood group protein ABCB6 are resistant to the malaria parasite Plasmodium falciparum.

    Get PDF
    The ATP-binding cassette transporter ABCB6 was recently discovered to encode the Langereis (Lan) blood group antigen. Lan null individuals are asymptomatic, and the function of ABCB6 in mature erythrocytes is not understood. Here, we assessed ABCB6 as a host factor for Plasmodium falciparum malaria parasites during erythrocyte invasion. We show that Lan null erythrocytes are highly resistant to invasion by P. falciparum, in a strain-transcendent manner. Although both Lan null and Jr(a-) erythrocytes harbor excess porphyrin, only Lan null erythrocytes exhibit a P. falciparum invasion defect. Further, the zoonotic parasite P. knowlesi invades Lan null and control cells with similar efficiency, suggesting that ABCB6 may mediate P. falciparum invasion through species-specific molecular interactions. Using tandem mass tag-based proteomics, we find that the only consistent difference in membrane proteins between Lan null and control cells is absence of ABCB6. Our results demonstrate that a newly identified naturally occurring blood group variant is associated with resistance to Plasmodium falciparum

    Induction of Glucose Metabolism in Stimulated T Lymphocytes Is Regulated by Mitogen-Activated Protein Kinase Signaling

    Get PDF
    T lymphocytes play a critical role in cell-mediated immune responses. During activation, extracellular and intracellular signals alter T cell metabolism in order to meet the energetic and biosynthetic needs of a proliferating, active cell, but control of these phenomena is not well defined. Previous studies have demonstrated that signaling from the costimulatory receptor CD28 enhances glucose utilization via the phosphatidylinositol-3-kinase (PI3K) pathway. However, since CD28 ligation alone does not induce glucose metabolism in resting T cells, contributions from T cell receptor-initiated signaling pathways must also be important. We therefore investigated the role of mitogen-activated protein kinase (MAPK) signaling in the regulation of mouse T cell glucose metabolism. T cell stimulation strongly induces glucose uptake and glycolysis, both of which are severely impaired by inhibition of extracellular signal-regulated kinase (ERK), whereas p38 inhibition had a much smaller effect. Activation also induced hexokinase activity and expression in T cells, and both were similarly dependent on ERK signaling. Thus, the ERK signaling pathway cooperates with PI3K to induce glucose utilization in activated T cells, with hexokinase serving as a potential point for coordinated regulation

    Role of Synucleins in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common causes of dementia and movement disorders in the elderly. While progressive accumulation of oligomeric amyloid-β protein (Aβ) has been identified as one of the central toxic events in AD leading to synaptic dysfunction, accumulation of α-synuclein (α-syn) resulting in the formation of oligomers has been linked to PD. Most of the studies in AD have been focused on investigating the role of Aβ and Tau; however, recent studies suggest that α-syn might also play a role in the pathogenesis of AD. For example, fragments of α-syn can associate with amyloid plaques and Aβ promotes the aggregation of α-syn in vivo and worsens the deficits in α-syn tg mice. Moreover, α-syn has also been shown to accumulate in limbic regions in AD, Down’s syndrome, and familial AD cases. Aβ and α-syn might directly interact under pathological conditions leading to the formation of toxic oligomers and nanopores that increase intracellular calcium. The interactions between Aβ and α-syn might also result in oxidative stress, lysosomal leakage, and mitochondrial dysfunction. Thus, better understanding the steps involved in the process of Aβ and α-syn aggregation is important in order to develop intervention strategies that might prevent or reverse the accumulation of toxic proteins in AD

    Potent amyloidogenicity and pathogenicity of Aβ43.

    Get PDF
    The amyloid-β peptide Aβ42 is known to be a primary amyloidogenic and pathogenic agent in Alzheimer\u27s disease. However, the role of Aβ43, which is found just as frequently in the brains of affected individuals, remains unresolved. We generated knock-in mice containing a pathogenic presenilin-1 R278I mutation that causes overproduction of Aβ43. Homozygosity was embryonic lethal, indicating that the mutation involves a loss of function. Crossing amyloid precursor protein transgenic mice with heterozygous mutant mice resulted in elevated Aβ43, impairment of short-term memory and acceleration of amyloid-β pathology, which accompanied pronounced accumulation of Aβ43 in plaque cores similar in biochemical composition to those observed in the brains of affected individuals. Consistently, Aβ43 showed a higher propensity to aggregate and was more neurotoxic than Aβ42. Other pathogenic presenilin mutations also caused overproduction of Aβ43 in a manner correlating with Aβ42 and with the age of disease onset. These findings indicate that Aβ43, an overlooked species, is potently amyloidogenic, neurotoxic and abundant in vivo

    IFUP-TH/2005-05 hep-th/0502004 Light Nonabelian Monopoles and Generalized r-Vacua in Supersymmetric Gauge Theories

    Get PDF
    We study a class of N = 1 supersymmetric U(N) gauge theories and find that there exist vacua in which the low-energy magnetic effective gauge group contains multiple nonabelian factors, ∏ i SU(ri), supported by light monopoles carrying the associated nonabelian charges. These nontrivially generalize the physics of the so-called r-vacua found in softly broken N = 2 supersymmetric SU(N) QCD, with an effective lowenergy gauge group SU(r) × U(1) N−r. The matching between classical and quantum (r1, r2,...) vacua gives an interesting hint about the nonabelian duality

    Analysis of the Regulatory and Catalytic Domains of PTEN-Induced Kinase-1 (PINK1)

    No full text
    Published VersionThe research outputs in this collection have been funded in whole or in part by the National Health and Medical Research Council (NHMRC).Mutations of the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) gene can cause early-onset familial Parkinson disease (PD). PINK1 encodes a neuroprotective protein kinase localized at the mitochondria, and its involvement in regulating mitochondrial dynamics, trafficking, structure, and function is well documented. Owing to the lack of information on structure and biochemical properties for PINK1, exactly how PINK1 exerts its neuroprotective function and how the PD-causative mutations impact on PINK1 structure and function remain unclear. As an approach to address these questions, we conducted bioinformatic analyses of the mitochondrial targeting, the transmembrane, and kinase domains of PINK1 to predict the motifs governing its regulation and function. Our report sheds light on how PINK1 is targeted to the mitochondria and how PINK1 is cleaved by mitochondrial peptidases. Moreover, it includes a potential optimal phosphorylation sequence preferred by the PINK1 kinase domain. On the basis of the results of our analyses, we predict how the PD-causative mutations affect processing of PINK1 in the mitochondria, PINK1 kinase activity, and substrate specificity. In summary, our results provide a conceptual framework for future investigation of the structural and biochemical basis of regulation and the neuroprotective mechanism of PINK1
    corecore