6 research outputs found
DIS and the effects of fluctuations: a momentum space analysis
Among the dipole models of deep inelastic scattering at small values of the
Bjorken variable , one has been recently proposed which relates the virtual
photon-proton cross section to the dipole-proton forward scattering amplitude
in momentum space. The latter is parametrized by an expression which
interpolates between its behavior at saturation and the travelling wave,
ultraviolet, amplitudes predicted by perturbative QCD from the
Balitsky-Kovchegov equation. Inspired by recent developments in coordinate
space, we use this model to parametrize the proton structure function and
confront it to HERA data on deep inelastic scattering. Both event-by-event
and the physical amplitudes are considered, the latter used to investigate the
effect of gluon number fluctuations, beyond the mean-field approximation. We
conclude that fluctuations are not present in DIS at HERA energies.Comment: 9 pages, 2 figure
One-dimensional model for QCD at high energy
We propose a stochastic particle model in (1+1)-dimensions, with one
dimension corresponding to rapidity and the other one to the transverse size of
a dipole in QCD, which mimics high-energy evolution and scattering in QCD in
the presence of both saturation and particle-number fluctuations, and hence of
Pomeron loops. The model evolves via non-linear particle splitting, with a
non-local splitting rate which is constrained by boost-invariance and multiple
scattering. The splitting rate saturates at high density, so like the gluon
emission rate in the JIMWLK evolution. In the mean field approximation obtained
by ignoring fluctuations, the model exhibits the hallmarks of the BK equation,
namely a BFKL-like evolution at low density, the formation of a traveling wave,
and geometric scaling. In the full evolution including fluctuations, the
geometric scaling is washed out at high energy and replaced by diffusive
scaling. It is likely that the model belongs to the universality class of the
reaction-diffusion process. The analysis of the model sheds new light on the
Pomeron loops equations in QCD and their possible improvements.Comment: 35 pages, 4 figures, one appendi
Brazilian Flora 2020: Leveraging the power of a collaborative scientific network
International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora