3,300 research outputs found

    Bagging ensemble selection for regression

    Get PDF
    Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, superior to) other ensemble learning strategies, for instance, the original ES algorithm, stacking with linear regression, random forests or boosting. Motivated by the promising results in classification, this paper examines the predictive performance of the BES-OOB strategy for regression problems. Our results show that the BES-OOB strategy outperforms Stochastic Gradient Boosting and Bagging when using regression trees as the base learners. Our results also suggest that the advantage of using a diverse model library becomes clear when the model library size is relatively large. We also present encouraging results indicating that the non negative least squares algorithm is a viable approach for pruning an ensemble of ensembles

    What Turns Knowledge into Innovative Products? The Role of Entrepreneurship and Knowledge Spillovers

    Get PDF
    The knowledge spillover theory of entrepreneurship seeks to explain the fundamentals and consequences of entrepreneurship with respect to economic performance. This paper uses the knowledge spillover theory to explain different innovation outcomes. We hypothesize that a high rate of entrepreneurship facilitates the process of turning knowledge into new-to-the-market innovation but has no effect on the relationship between knowledge and new-to-the-firm innovation. Our results using European country-level and pooled OLS, fixed- and random-effects regressions show that a high rate of entrepreneurship increases the chances that knowledge will become new-to-the-market innovation. The findings highlight the importance of Schumpeterian entrepreneurship in the process of the commercialization of knowledge. We discuss the implications for entrepreneurship and innovation policy

    An explorative study of interface support for image searching

    Get PDF
    In this paper we study interfaces for image retrieval systems. Current image retrieval interfaces are limited to providing query facilities and result presentation. The user can inspect the results and possibly provide feedback on their relevance for the current query. Our approach, in contrast, encourages the user to group and organise their search results and thus provide more fine-grained feedback for the system. It combines the search and management process, which - according to our hypothesis - helps the user to onceptualise their search tasks and to overcome the query formulation problem. An evaluation, involving young design-professionals and di®erent types of information seeking scenarios, shows that the proposed approach succeeds in encouraging the user to conceptualise their tasks and that it leads to increased user satisfaction. However, it could not be shown to increase performance. We identify the problems in the current setup, which when eliminated should lead to more effective searching overall

    Maximal entropy random walk in community finding

    Full text link
    The aim of this paper is to check feasibility of using the maximal-entropy random walk in algorithms finding communities in complex networks. A number of such algorithms exploit an ordinary or a biased random walk for this purpose. Their key part is a (dis)similarity matrix, according to which nodes are grouped. This study encompasses the use of the stochastic matrix of a random walk, its mean first-passage time matrix, and a matrix of weighted paths count. We briefly indicate the connection between those quantities and propose substituting the maximal-entropy random walk for the previously chosen models. This unique random walk maximises the entropy of ensembles of paths of given length and endpoints, which results in equiprobability of those paths. We compare performance of the selected algorithms on LFR benchmark graphs. The results show that the change in performance depends very strongly on the particular algorithm, and can lead to slight improvements as well as significant deterioration.Comment: 7 pages, 4 figures, submitted to European Physical Journal Special Topics following the 4-th Conference on Statistical Physics: Modern Trends and Applications, July 3-6, 2012 Lviv, Ukrain

    Thermodynamic perturbation theory for dipolar superparamagnets

    Full text link
    Thermodynamic perturbation theory is employed to derive analytical expressions for the equilibrium linear susceptibility and specific heat of lattices of anisotropic classical spins weakly coupled by the dipole-dipole interaction. The calculation is carried out to the second order in the coupling constant over the temperature, while the single-spin anisotropy is treated exactly. The temperature range of applicability of the results is, for weak anisotropy (A/kT << 1), similar to that of ordinary high-temperature expansions, but for moderately and strongly anisotropic spins (A/kT > 1) it can extend down to the temperatures where the superparamagnetic blocking takes place (A/kT \sim 25), provided only the interaction strength is weak enough. Besides, taking exactly the anisotropy into account, the results describe as particular cases the effects of the interactions on isotropic (A = 0) as well as strongly anisotropic (A \to \infty) systems (discrete orientation model and plane rotators).Comment: 15 pages, 3 figure

    High energy behaviour of gamma gamma to f f(bar) processes in SM and MSSM

    Full text link
    We compute the leading logarithms electroweak contributions to gamma gamma to f f(bar) processes in SM and MSSM. Several interesting properties are pointed out, such as the importance of the angular dependent terms, of the Yukawa terms, and especially of the tan2β\tan^2\beta dependence in the SUSY contributions. These properties are complementary to those found in e+e- to f f(bar). These radiative correction effects should be largely observable at future high energy gamma gamma colliders. Polarized beams would bring interesting checks of the structure of the one loop corrections. We finally discuss the need for two-loop calculations and resummation.Comment: 22 pages and 12 figures. e-mail: [email protected]

    proBDNF inhibits the proliferation and migration of OLN-93 oligodendrocytes

    Get PDF
    In contrast with mature brain‑derived neurotrophic factor (mBDNF), proBDNF induces cell apoptosis. However, the function of proBDNF in oligodendrocytes remains unclear. In the present study, the OLN‑93 oligodendroglia cell line was utilized as an in vitro model to analyse the functions of proBDNF in oligodendroglia. p75NTR, sortilin and proBDNF were expressed in cultured OLN‑93 cells. It was indicated that proBDNF inhibited OLN‑93 cell proliferation in a dose‑dependent manner as determined using the MTT assay and BrdU staining. Furthermore, proBDNF suppressed the migration of OLN‑93 cells as demonstrated using the scratch assay. proBDNF also decreased cell viability and promoted apoptosis as indicated by activated cysteine‑aspartic acid protease‑3 (caspase‑3) immunocytochemistry. Notably, anti‑proBDNF treatment neutralized the effect of proBDNF and resulted in increased cell proliferation and migration and decreased apoptosis. However, these effects were not observed in the presence of recombinant p75NTR extracellular domain‑human FC fusion protein and p75NTR antibody, indicating that proBDNF imparts its inhibitory effects on oligodendrocytes through the p75NTR signal pathway.Shen Liu, Wei Guo, Hengxing Zhou, Liang Tang, Shiqing Feng, Jin-Hua Zhong, and Xi- Fu Zho

    Sensitivity of the Mott Transition to Non-cubic Splitting of the Orbital Degeneracy: Application to NH3 K3C60

    Full text link
    Within dynamical mean-field theory, we study the metal-insulator transition of a twofold orbitally degenerate Hubbard model as a function of a splitting \Delta of the degeneracy. The phase diagram in the U-\Delta plane exhibits two-band and one-band metals, as well as the Mott insulator. The correlated two-band metal is easily driven to the insulator state by a strikingly weak splitting \Delta << W of the order of the Kondo-peak width zW, where z << 1 is the metal quasiparticle weight. The possible relevance of this result to the insulator-metal transition in the orthorhombic expanded fulleride NH3 K3C60 is discussed.Comment: revtex, 15 pages including 6 ps figures. Submitted to Phys. Rev.

    Molecular scale contact line hydrodynamics of immiscible flows

    Full text link
    From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrodynamic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading to the breakup of the fluid-fluid interface, is accurately predicted.Comment: 33 pages for text in preprint format, 10 pages for 10 figures with captions, content changed in this resubmissio

    BPS R-balls in N=4 SYM on R X S^3, Quantum Hall Analogy and AdS/CFT Holography

    Get PDF
    In this paper, we propose a new approach to study the BPS dynamics in N=4 supersymmetric U(N) Yang-Mills theory on R X S^3, in order to better understand the emergence of gravity in the gauge theory. Our approach is based on supersymmetric, space-filling Q-balls with R-charge, which we call R-balls. The usual collective coordinate method for non-topological scalar solitons is applied to quantize the half and quarter BPS R-balls. In each case, a different quantization method is also applied to confirm the results from the collective coordinate quantization. For finite N, the half BPS R-balls with a U(1) R-charge have a moduli space which, upon quantization, results in the states of a quantum Hall droplet with filling factor one. These states are known to correspond to the ``sources'' in the Lin-Lunin-Maldacena geometries in IIB supergravity. For large N, we find a new class of quarter BPS R-balls with a non-commutativity parameter. Quantization on the moduli space of such R-balls gives rise to a non-commutative Chern-Simons matrix mechanics, which is known to describe a fractional quantum Hall system. In view of AdS/CFT holography, this demonstrates a profound connection of emergent quantum gravity with non-commutative geometry, of which the quantum Hall effect is a special case.Comment: 42 pages, 2 figures; v3: a new paragraph on counting unbroken susy of NC R-balls and references adde
    corecore