3,102 research outputs found

    Nonlocal effects in thin 4H-SiC UV avalanche photodiodes

    Get PDF
    The avalanche multiplication and excess noise characteristics of 4H-SiC avalanche photodiodes with i-region widths of 0.105 and 0.285 mum have been investigated using 230-365-nm light, while the responsivities of the photodiodes at unity gain were examined for wavelengths up to 375 nm. Peak unity gain responsivities of more than 130 mA/W at 265 nm, equivalent to quantum efficiencies of more than 60%, were obtained for both structures. The measured avalanche characteristics show, that beta > alpha and that the beta/alpha ratio remains large even in thin 4H-SiC avalanche regions. Very low excess noise, corresponding to k(eff) < 0.15 in the local noise model, where k(eff) = alpha/beta(beta/alpha) for hole (electron) injection, was measured with 365-nm light in both structures. Modeling the experimental results using a simple quantum efficiency model and a nonlocal description yields effective ionization threshold energies of 12 and 8 eV for electrons and holes, respectively, and suggests that the dead space in 4H-SiC is soft. Although dead space is important, pure hole injection is still required to ensure low excess noise in thin 4H-SiC APDs owing to beta/alpha ratios that remain large, even at very high fields

    Multiplication and excess noise characteristics of thin 4H-SiC UV avalanche photodiodes

    Get PDF
    The avalanche multiplication and excess noise characteristics of thin 4H-SiC avalanche photodiodes with an i-region width of 0.1 µm have been investigated. The diodes are found to exhibit multiplication characteristics which change significantly when the wavelength of the illuminating light changes from 230 to 365 nm. These multiplication characteristics show unambiguously that β > α in 4H-SiC and that the β/α ratio remains large even in thin 4H-SiC diodes. Low excess noise, corresponding to k=0.1 in the local model where k=α/β for hole injection, was measured using 325-nm light. The results indicate that 4H-SiC is a suitable material for realizing low-noise UV avalanche photodiodes requiring good visible-blind performance

    Texture development and transformation strain of a cold-rolled Ti50-Ni45-Cu5 alloy

    Get PDF
    Shape memory alloys (SMAs) are finding increased use as functional materials in the aerospace, energy and medical industries 1 J. van Humbeeck, Shape Memory Materials and Phenomena—Fundamental Aspects and Applications, p. 3771, vol. 246, MRS, Pittsburgh, PA (1992).(1), (2) and (3). Shape memory behaviour is based on the recovery of large amounts of induced strain upon heating and/or unloading. This transformation strain is a result of the reversible growth of certain favoured martensite variants during martensite transformation and/or stressing [4] and [5]. For single crystal SMAs, the favoured variants are those which result in the maximum transformation strain for a specific orientation. This has been well established for several common single crystal SMAs such as TiNi, CuZnAl and CuAlNi [4] and [6].\ud \ud For polycrystalline SMAs, it is not clear which variants are favoured. Anisotropic behaviour in SMAs has been interpreted based on the anisotropy data of single crystal materials using the concept of the selection of favoured martensite variants. This has met with only limited success in work on NiTi alloys due to the lack of information about which variants are formed [7] and [8]. An investigation of the anisotropic behaviour of textured SMAs was thus conducted in order to determine which martensite variants develop during thermal cycling of a commercial TiNiCu SMA. The relationship between the observed variant development, changes in texture and anisotropic shape memory behaviour are discussed in light of models using the concept of favoured martensite variants

    An E-Readiness Assesment Framework and Two Field Studies

    Get PDF
    Although e-business is increasingly important to companies competing in global markets, rushed and ineffective implementation of e-business in companies results in valuable resources being wasted without achieving significant tangible benefits. To minimize risks and maximize potential benefits in e-business implementation, a company needs to know to what degree it is ready for e-business and in what aspects it needs to improve itself before implementing e-business. Although a few e-readiness assessment models are used in practice, relatively little is published in academic research journals on this issue. Further, the current practical e-readiness assessment models are largely based on the experience of e-business implementation in developed countries. Given the key differences between developed and developing countries, e-business implementation in developing countries could be different from that in developed countries. This paper proposes an e-readiness assessment framework from the perspective of developing countries. The assessment framework contains five hierarchical levels, including 67 specific assessment indicators. Two field studies were conducted to illustrate and test the usability of the proposed e-readiness assessment framework in 21 retail companies of China

    Singlet and triplet bipolarons on the triangular lattice

    Get PDF
    We study the Coulomb-Fr\"ohlich model on a triangular lattice, looking in particular at states with angular momentum. We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace of the Coulomb-Fr\"ohlich model with large phonon frequency. Such a projection is consistent with large long-range electron-phonon coupling and large repulsive Hubbard UU. Significant differences are found between the band structure of singlet and triplet states: The triplet state (which has a flat band) is found to be significantly heavier than the singlet state (which has mass similar to the polaron). We test whether the heavier triplet states persist to lower electron-phonon coupling using continuous time quantum Monte Carlo (QMC) simulation. The triplet state is both heavier and larger, demonstrating that the heavier mass is due to quantum interference effects on the motion. We also find that retardation effects reduce the differences between singlet and triplet states, since they reintroduce second order terms in the hopping into the inverse effective mass.Comment: Proceedings of SNS 200

    Bulk experimental evidence of half-metallic ferromagnetism in doped manganites

    Full text link
    We report precise measurements and quantitative data analysis on the low-temperature resistivity of several ferromagnetic manganite films. We clearly show that there exists a T^{4.5} term in low-temperature resistivity, and that this term is in quantitative agreement with the quantum theory of two-magnon scattering for half metallic ferromagnets. Our present results provide the first bulk experimental evidence of half-metallic ferromagnetism in doped manganites.Comment: 4 pages, 4 figure

    Experimental method for biaxial tensile strength of fabrics and preliminary investigations

    Get PDF
    This paper presents a novel experimental approach to determine the biaxial strength of fabrics. A double-layer cruciform specimen was proposed based on the improvement of previous test specimen. The design and manufacture process of the novel specimen was described in detail. Uniaxial and biaxial tests of a specific material were performed subsequently. Based on numerical simulation, the biaxial strength of the fabrics was preliminary investigated. And the correlation between uniaxial and biaxial strength of the material was discussed. The proposed experiments could characterize the biaxial strength of fabrics, and the biaxial strength of the fabrics at 1:1 tension is higher than the weft strength and little lower than the warp strength

    PMS53 Association Between Teriparatide Adherence and Health Care Utilization and Costs in Real World United States Kyphoplasty/Vertebroplasty Patients

    Get PDF

    Differences in foetal topographical anatomy between insertion sites of the iliopsoas and gluteus medius muscles into the proximal femur: a consideration of femoral torsion

    Get PDF
    Background: Prenatal twisting of the femoral neck seems to result in an angle of anteversion or torsion, but the underlying process has not been elucidated.  Materials and methods: This study analysed sagittal, frontal and horizontal sections of 34 embryo and foetal specimens of gestational age (GA) 6–16 weeks (crown-rump length 21–130 mm). At GA 6–7 weeks, the iliopsoas (IP) and gluteus medius (GME) muscles were inserted into the anterior and posterior aspects of the femur, respectively, allowing both insertions to be viewed in a single sagittal section.  Results: At GA 8 weeks, the greater trochanter and the femoral neck angle became evident, and the GME tendon was inserted into the upper tip of the trochanter. At GA 9 weeks, the location of IP insertion was to the medial side of the GME insertion. After 9 weeks, the IP insertion consisted of a wavy, tendino- us part of the psoas muscle and another part of the iliacus muscle, with many fibres of the latter muscle attached to the joint capsule. After GA 12 weeks, the IP was inserted into the anteromedial side of the greater trochanter, while the aponeurotic insertion of the GME wrapped around the trochanter. At GA 15–16 weeks, a deep flexion at the hip joint caused an alteration in the relative heights of the lesser and greater trochanter, with the former migrating from the inferior to the slightly superior side.  Conclusions: These findings indicate that twisting of the femoral neck started at GA 8–9 weeks.
    • …
    corecore