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Abstract: With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste 

management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the 

waste system of Hangzhou city in China. An integrated model was established, including waste generation, 

collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH4 

released from landfilling was the primary pollutant contributing to global warming, and HCl and NH3 from 

incineration contributed most to acidification. Materials recycling and incineration with energy recovery were 

important because of the induced savings in material production based on virgin materials and in energy production 

based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be 

relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the 

increase in energy production from waste avoiding energy production by traditional power plants. A ban on free 

plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other 

materials used in producing the disposal plastic bags. Sensitivity analysis confirmed the robustness of the results. 

LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental 

consequences, and can be used for decision support and strategic planning in developing countries like China where 

pollution control has become increasingly important with the rapid increase of waste generation as well as the 

increasing public awareness of environmental protection. 

Keywords: Life cycle assessment (LCA), solid waste, environmental impacts, waste management modelling, 

EASEWASTE 



 

Introduction 

Waste management has become a key issue in environmental protection and urban management in China as it has in 

many rapidly developing economies (Wang & Nie 2001a, Wang & Nie 2001b). Main challenges include the 

collection of data describing the existing waste management system and developing a rational assessment of 

potential improvements in the system. The purpose of this paper is to introduce LCA-modelling (Life Cycle 

Assessment) as a holistic and systematic methodology for environmental evaluation of waste management systems 

in developing countries so that the information collection, technology development and waste management system 

improvements can be introduced in a scientific and efficient way. 

The paper presents the results of an assessment of environmental impacts of the municipal solid waste system in 

the City of Hangzhou, China. The assessment includes the current municipal solid waste management system and 

two potential improvements: (1) optimizing the waste collection system so that the waste is transported to the nearest 

treatment facilities, and (2) avoiding the use of free shopping bags made of non-recyclable plastic and introducing 

reusable bags made of recyclable plastic. 

LCA accounts for all uses of resources and all emissions from the system accumulated through the whole 

‘lifetime’ of the waste (Hansen et al. 2006a, Christensen et al. 2007). In this study we used the EASEWASTE model 

(Environmental Assessment of Solid Waste Systems and Technologies), which has been developed by the Technical 

University of Denmark for environmental assessment of waste systems. EASEWASTE is able to compare different 

waste management strategies, waste treatment methods and waste treatment technologies by quantitatively 

evaluating environmental impacts and resource consumptions (Kirkeby et al. 2006a). The model contains default 

data for waste composition and source segregation efficiencies as well as for most technical processes: collection, 

transport, material recycling facilities, thermal treatment, composting, digestion, landfilling, recycling processes, 

use-on-land of organic waste, material utilization and energy utilization, as well as external processes that may occur 

either upstream or downstream of a solid waste management system, such as energy production and consumption 



 

processes. The model calculates emissions to air, water and soil and any consumption of resources. The life cycle 

impact assessment (LCIA) method from EDIP 1997 (Wenzel et al. 1997) was applied to translate the emissions into 

environmental impacts (Kirkeby et al. 2006b). The model is a framework and all the necessary data in each category 

can be defined by the users, including that of the LCIA method. EASEWASTE has been used in the evaluation of 

waste management systems, such as application of treated organic solid waste on agricultural land (Hansen et al. 

2006a, Hansen et al. 2006b), solid waste landfill (Kirkeby et al. 2007), solid waste incineration (Riber et al. 2008) 

and for assessing the solid waste management system in the municipality of Aarhus, Denmark (Kirkeby et al. 

2006b). 

Materials and Methods 

For the Hangzhou case study, data have been collected mainly from local municipal and environmental departments, 

local waste treatment plants, associated references and bibliographies. Some data which are of less importance or 

lacking under Chinese conditions were taken from the default database in EASEWASTE and the articles mentioned 

above. EASEWASTE was utilized to represent a life cycle inventory, a characterization of impacts, a normalized 

impact profile and finally a weighted impact profile. 

Scope of waste management system 

Hangzhou is a mega city in east of China and approximately 2 775 800 inhabitants lived in the City of Hangzhou in 

2006, not including the inhabitants living in suburbs (Li et al. 2007). The housing is dominated by apartment 

buildings. The unit generation rate of waste was 1.17 kg per person per day, and the total amount of municipal solid 

waste was approximately 3 247 tonnes per day, equal to 1 185 269 tonnes per year. The composition of solid waste 

used in this paper is shown in Table 1 (Nie 2000). 

 

 

 



 

Table 1 Typical composition of MSW in China (%) (Nie 2000) 

Fractions Percentage by wet weight DS (%) 
Element percentage by weight (%DS) 

C H O N S 

Vegetable food waste 45 28 48.0 6.4 37.6 2.6 0.4 

All kinds of paper 15 85 43.5 6.0 44.0 0.3 0.2 

Yard waste, flowers 12 55 47.8 6.0 38.0 3.4 0.3 

All kinds of glass 8 95 0.0 0.0 0.0 0.0 0.0 

Cardboard 4 75 44.0 5.9 44.6 0.3 0.2 

Ash 4 90 26.3 3.0 2.0 0.5 0.3 

All kinds of plastics 3 92 60.0 7.2 22.8 0.0 0.0 

Other metals 3 95 0.0 0.0 0.0 0.0 0.0 

Wood 2 70 49.5 6.0 42.7 0.2 0.1 

Textiles 2 90 55.0 6.6 31.2 4.6 0.15 

Aluminium containers 1 95 0.0 0.0 0.0 0.0 0.0 

Rubber, etc 0.5 90 78.0 10.0 0.0 2.0 0.0 

Shoes, leather 0.5 90 60.0 8.0 11.6 10.0 0.4 

total 100 56.8 41.25 5.41 32.16 1.81 0.27 

The total amount of solid waste was 1185 269 tonnes per year, of which 271 427 tonnes per year was 

individually collected waste, including 106 674 tonnes of waste paper, 66 375 tonnes of waste glass and 98 378 

tonnes of other individual collections such as plastic bottles, aluminium containers and so on. The individual 

collection aims at the valuable fractions to be recycled by individual, unorganized transportation. These activities 

were modelled as part of waste separation at the source. The recycle percentages of the waste are shown in Table 2 

(Tian et al. 2007). 

Table 2 Recycle percentages of different fractions in MSW (Tian et al. 2007) 

Fractions Collecting Percentage (％) 

All kinds of plastics 20 

Rubber, etc 50 

All kinds of paper 60 

Cardboard 80 

Textiles 60 

Shoes, leather 60 

Other metals 60 

Aluminium containers 90 

All kinds of glass 70 

The rest of the municipal solid waste, which was approximately 913 842 tonnes per year, was collected by the 

municipal collection system and transported to the treatment plants after material recycling, with about 18 654 



 

tonnes of waste recycled annually. In terms of the capacity of each treatment plant, 32 945 tonnes per year was taken 

to incinerator A, 210 907 tonnes per year was taken to incinerator B which is close to the material recycling facilities, 

122 638 tonnes per year was taken to incinerator C, and the residuals were directed to the landfill which is outside 

the city. The transport distances are average distances from each material recycling facility and transfer station to the 

corresponding treatment plant. The integrated solid waste system of the city is represented in Figure 1. 

 

Fig. 1 Municipal solid waste system of Hangzhou City, China 



 

Technologies 

The technologies contained in the waste system model can be classified into two types. One is the waste treatment 

and disposal technologies including material recycling facilities (MRFs), incineration, landfill and material recycling 

as shown in Figure 1. The other is external processes. External processes represent the environmental impacts from 

material production and energy production which are used in the waste system. The following is an overview of 

some of the most important technology parameters for the study. 

The collection trucks in the study were 5 tonne collection trucks with an average fuel consumption of 1.28 l per 

tonne collected (Li et al. 2007), and they were assumed to have a combustion technology corresponding to Euro3 

standards. Electricity for all processes was mainly based on coal production (Li et al. 2007) and this is also the 

process used for substituting the energy production from the incinerators. The energy recovery efficiency for all 3 

incinerators was set to be 23% (from default database). All residual waste products leaving the 3 incinerators were 

sent to Tanziling sanitary landfill. The recycling processes were all from the EDIP database and the following 

substitution percentages were used: Paper recycling 82 %; Plastic recycling 81 %; Cardboard recycling 85 %; Iron 

recycling 100 %; Aluminium recycling 79 %; and Glass recycling 96 %. The residual waste was sent to the same 

mixed waste landfill. The landfill has a limited collection of methane for energy recovery, 29 % of the methane is 

collected for energy recovery with a combustion efficiency of 30%. Another 8% of the methane is collected and 

flared. The remaining 63 % of the potential methane is assumed to be either oxidized in the top cover or released to 

the atmosphere. 95% of the leachate is assumed collected and sent to a waste water treatment plant. 

Scenarios 

The environmental assessment is based on three scenarios, where the first two (Scenario A and B) addresses the 

waste distribution to the treatment facilities. For the sake of the global environment, free shopping bags made of 

non-recyclable plastic are forbidden in China after June 1st, 2008. So Scenario C assesses the environmental impacts 

from substitution of non-recyclable disposable bags with reusable plastic bags made from recycled plastic. A deposit 



 

on the bags has been introduced to increase the reuse of the bags. 

Scenario A is the current waste management system in Hangzhou, in which the mixed waste after recycling is 

sent to incineration and landfill averagely in terms of the capacity of the treatment plants. 

Scenario B is based on an optimization of waste collection and transportation, according to which solid waste 

generated from multi-family houses is collected and transported preferentially to the nearest thermal treatment 

facility, and the waste exceeding the capacity of the current facilities is sent straight to the landfill. 

Scenario C considers recyclable plastic bags as the substitution and the consumption of plastic bags will be 

reduced by 2/3. Furthermore, about 50% of the plastic bags discarded can be recycled. 



 

Results 

The scenarios gave the following material flows as seen in Table 3 separated into individual collection and municipal 

collection. 

Table 3 Treatment and disposal of waste and residues in all scenarios (tonnes) 

 Scenario A Scenario B Scenario C 

Individual collections 271 427 271 427 271 427 

Plastic recycling 7 112 7 112 7 112 

Paper recycling 106 674 106 674 106 674 

Cardboard recycling 37 929 37 929 37 929 

Steel recycling 21 335 21 335 21 335 

Aluminium recycling 10 667 10 667 10 667 

Glass recycling 66 375 66 375 66 375 

Residues (Landfill) 21 335 21 335 21 335 

Municipal collections 913 842 913 842 896 063 

Plastic recycling 3 023 3 023 4 800 

Cardboard recycling 1 896 1 896 1 896 

Steel recycling 7 453 7 453 7 453 

Aluminium recycling 593 593 593 

Glass recycling 5 689 5 689 5 689 

Incinerator A 32 945 54 741 53 545 

Incinerator B 210 907 292 005 285 629 

Incinerator C 122 638 164 265 160 678 

Landfill 528 698 384 177 375 780 

Total 1 185 269 1 185 269 1 167 490 

The results for all three scenarios are calculated as normalized potential impacts according to the normalized 

environmental impacts potential reference of China (Li et al. 2007), which are different from the default LCIA 

method, EDIP 1997 (Wenzel et al. 1997), as shown in Table 4. Normalization provides a relative expression of the 

environmental impact or resource consumption compared to the impact from one average person. The yearly 

contributions from the defined system are divided by the normalization reference, which are the yearly total emission 

(global/regional/local) per person (worldwide/regionally/locally). This yields a normalized impact potential in the 

unit ‘person equivalent’, PE for short (Hansen et al. 2006b). In the EASEWASTE software, a positive value of 

normalized impact potential means a contribution to the impact, and a negative value indicates that the system in the 

scenario leads to avoidance of the impact or resource consumption due to an avoided production of external virgin 



 

materials or energy such as electricity, district heating, paper and glass (Kirkeby et al. 2006b). When these products 

are substituted, the emissions to air, water and soil that would have occurred during their manufacturing are 

subtracted from emissions occurring in the waste management system. 

Table 4 Environmental normalized potential impacts reference in China and EDIP 1997* (Li et al. 2007 & 

Wenzel et al. 1997) 

Environmental Impacts Standard Unit 
Normalization Reference 

China EDIP 1997 

Global warming (GW100) kgCO2 eq·a-1 8700 8700 

Stratospheric Ozone Depletion (OD) kgCFC-11 eq·a-1 0.20 0.103 

Acidification (AC) kgSO2 eq·a-1 36 74 

Nutrient Enrichment (NE) kgNO3 eq·a-1 62 119 

Photochemical Ozone Formation (POF) kgC2H4 eq·a-1 0.65 25 

Figure 2 shows the environmental impacts caused by scenario A where it can be seen that most of the impacts 

are more or less avoided in total except stratospheric ozone depletion which shows an infinitesimal negative value. 

Materials recycling, especially aluminium recycling and paper recycling are the main contributors to the savings of 

emissions of photochemical ozone formation, acidification and greenhouse gases. Incineration of waste can save the 

impacts mentioned above as well. The released methane from the landfill is the main pollutant source of global 

warming and photochemical ozone formation, and consumption of electricity in the MRFs and transfer stations 

contributes with the maximum impacts of acidification. Furthermore, over 75% of the contribution to global 

warming is caused by the release of landfill gases. 
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Fig. 2 Normalized potential impacts for scenario A 

The differences in environmental impacts from scenario A and scenario B, which are shown in Table 5, are 

relatively large in most impacts due to an additional 16% of the overall waste mass, approximately 900 000 tonnes, 

is lead to incineration instead of the landfill (Table 3). The potential impacts for global warming from scenario A is 

greater than that from scenario B due to more methane release from landfill in scenario A, though the total 

normalized impacts are both negative because of energy recovery from waste incineration and biogas. The high 

values of savings for the acidification impact indicate that recycled material production and electricity from the 

incinerated waste contribute to the avoidance of pollution deriving from virgin materials and energy production 

(Figure 3). For photochemical ozone formation, scenario B is significantly better than scenario A. This is because the 

emissions from transportation and landfill counteract almost all the avoidance from recycling and incineration in 

scenario A, whereas in scenario B, the pollution from landfill decreases and the avoidance from incineration increase. 

Nonetheless, in the whole waste system, the methane released from the landfill is a pollutant of primary importance 



 

to global warming and photochemical ozone formation, and the hydrogen chloride from incineration and ammonia 

from the landfill are the two main substances contributing to acidification. 

Table 5 Environmental impacts from scenario A and B 

Impacts 
Scenario A 

PE 

Scenario B 

PE 
Difference in PE Comments 

Global warming –14338 –23116 –8778 Scenario B better 

Stratospheric Ozone Depletion –19 –25 –6 Scenario B better 

Acidification –56617 –57730 –1113 Scenario B marginally better 

Nutrient Enrichment –13813 –13062 751 Scenario A marginally better 

Photochemical Ozone Formation –2785 –40871 –38086 Scenario B significantly better 
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Fig. 3 Normalized potential impacts for scenario B 

Results from scenario C (Table 3 and Figure 4) show that approximately 18 000 tonnes of waste is avoided per 

year after the free shopping bags made of non-recyclable plastic were forbidden. The difference between scenario B 

and C is not as significant as that between scenario A and B, but still impacts are saved in all the categories 



 

investigated. In scenario C, about 1 800 tonnes of additional plastic per year is going to be recycled due to the 

enhancement of the recyclable proportion. It will make a great contribution to reducing nutrient enrichment, 

greenhouse gases, photochemical ozone and acidification. On the other hand the decrease of plastic waste will lead 

to less power production from incineration and thus less substitution of electricity generation from coal. Therefore, 

scenario B has apparent advantages in most impacts in comparison with scenario C without including the impacts 

avoided from less plastic production. Greenhouse gases for instance, are mainly caused by gas released from the 

landfill and the use of fossil fuel, as shown in Table 6. But meanwhile, the incineration can save the impacts of 

greenhouse gases because of the energy production which is the substitution of fossil fuel energy. In theses instances, 

there is marginally less transportation and less biogas in scenario C because of less waste generation, and also less 

substitution of energy. As a result. Scenario C seems not as good as scenario B if the avoided impacts from less 

plastic production are not included. However, the potential impacts of material production can be calculated in 

EASEWASTE as well. There are 3781 PE avoided from avoided production of plastic bags and it means more 

benefit to the global warming impact due to saved oil resources and other materials for plastic production. The same 

conclusion can be obtained in the analysis of nutrient enrichment and acidification impacts. 
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Fig. 4 Normalized potential impacts for scenario C 

Table 6 Impacts of global warming from scenario B and C 

Technologies 
Scenario B 

PE 

Scenario C 

PE 
Difference in PE Comments 

Collection and transportation 1103 1084 –19 No significant difference 

Transfer stations and MRFs 5973 5856 –117 Scenario C marginally better 

Material recycling –30277 –30413 –136 Scenario C marginally better 

Incinerators –13216 –13729 –513 Scenario C marginally better 

Landfill 13301 13294 –7 No significant difference 

Avoided plastic production 0 –3781 –3781 Scenario C significantly better 

Total –23116 –23908 –792 Scenario C better 

Sensitivity analysis 

There was a significant degree of uncertainty in some data utilized in the scenarios above, so it wss necessary to 

perform a sensitivity analysis to assess the robustness of the results and the conclusions. With this purpose a series of 

alternative scenarios, in which some of the parameters in scenario A and B which had been found uncertain or 

interesting, were constructed to evaluate the importance of these parameters. The sensitivity scenarios are mainly 



 

based on scenario C, and compared with scenario C. The sensitivity parameters are described below and all the 

results are aggregated in Figure 5. 

Scenario C1: The decrease of plastic waste is 1/2 instead of 2/3 

The decrease in plastic waste is an uncertain value because it will be related to the implementation of the policy, the 

acceptance of the public, the cost of shopping bags and many other factors. It was assumed that 2/3 of non-recyclable 

plastic waste will be avoided after the free shopping bags were forbidden in scenario C and the proportion was 

changed to 1/2 in this scenario. The result shows a small difference with that of scenario C. The avoidance of 

nutrient enrichment, global warming and acidification is a little less than that of scenario C due to the pollution from 

4 445 tonnes more plastic produced per year. 

Scenario C2: The recycling proportion of plastic bags reduced to 35% from 50% 

The plastic recycling percentage depends on technology, properties of waste, utilization of recycled waste and so on. 

It even varies with the labour market as well. Therefore, 35% of recycling proportion of plastic bags is considered as 

a more conservative estimation compared with 50% as used in the original scenario. The results show that the saving 

of impacts is of little difference with that of scenario C, which indicates that the recycling proportion of recyclable 

plastic bags is not a sensitive parameter in the system with incineration. 

Scenario C3: The reduced plastic bags are substituted by the same quantity of paper bags 

It may affect the convenience of consumers at the beginning that the free plastic bags were banned, so the 

substitutions of non-recyclable plastic bags are probably put on schedule very soon. Paper bags are an alternative 

option due to its decomposability, recycling ability and low cost, and it is also discussible because of the 

consumption of resources, low strength and its non-watertight quality. This scenario evaluates the difference between 

plastic bags and paper bags in the sense of environmental impacts. The results in figure 5 show that the impacts of 

global warming, nutrient enrichment and photochemical ozone formation are significantly worse in scenario C3 due 

to the pollution and resource consumption from more paper production and application. Though more paper waste 



 

leads to more power recovery in incinerators, the saved impacts can not compensate for the impacts from paper 

production. 
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Fig. 5 Normalized potential impacts for sensitivity scenarios 

Discussion 

The scenarios depend on a large set of data which all cannot be collected satisfactorily. The data were collected from 

local municipal and environmental departments, local waste treatment plants, associated references and 

bibliographies, but were also taken from the default database in EASEWASTE. In this instance, it is necessary to 

assess the reliability and source of the data. Some of the main problems in the waste system are related to the waste 

composition, transportation, treatment, and evaluation method. 

Waste generation 

The waste quantity in Hangzhou system is in accordance with the population in the centre of the city. A number of 

inhabitants living in the suburbs, where the waste system is not as sound and holistic as that in the city, are not 

included in the scenarios. The waste composition which is taken from a bibliography is based on the average waste 

composition in cities of China. However, the compositions varies within cities and local cultures, for instance, 3% 



 

(weight) of waste is plastic waste in the municipal solid waste in Beijing while plastic waste amounts to 

approximately 7% in Shanghai. Furthermore, the chemical compositions of each material fraction were not complete 

for Chinese material fractions, and the missing data are taken from the EASEWASTE default database from fraction 

with similar characteristics. 

Collection and transportation 

The waste collection and transportation in the cities of China are implemented in a specific way. Most recyclable and 

valuable fractions in the waste such as glass bottles, plastic bottles, cardboard and metals are collected by individuals 

and then sold to the transfer stations. So it has been named ‘individual collections’ in this paper and non-motor 

vehicles are utilized to transport the waste. It can be considered as a kind of source-separation and there is no 

emission or impact to the environment because no fuel is consumed, except for the production of the non-motorized 

vehicles which are considered negligible in this study. But individual collections are unorganized and data on the 

amounts collected are hard to obtain. 

Technologies 

The main treatment technologies in Hangzhou system are incineration and landfill. As shown in the above results, 

the landfill leads to more emissions than incineration due to the different standards of operation. Therefore, the waste 

management system can probably benefit if more incinerators come in service in the future instead of landfills. 

Moreover, because of many reasons including economy, technique, society and culture, there is no source separation 

for organic waste, and therefore, there is no biotechnological utilization in the treatment system. This situation may 

lead to many problems. Firstly, the organic waste, which usually has a high water content, does not burn very well. 

Secondly, the organic waste poses many problems in landfill such as leachate, gas release and land use.  Thirdly, 

composted or digested organic waste could constitute a source of nutrients if applied to land as fertilizer. Therefore , 

for organic waste alternatives to incinerators and landfills should be investigated in order to develop a sound and 

systematic waste management strategy. 



 

LCA method 

LCA provides a detailed and complete assessment method for waste management and the models such as 

EASEWASTE make the calculation and evaluation much easier. The methodology is versatile, whereas the 

normalization references and weighting factors are different in different regions (except the global impacts). So it is a 

crucial and desirable job to construct corresponding standard methods with particular and convincing data worldwide, 

regionally and locally. 

Conclusion 

The results from the environmental assessment of the solid waste system in the City of Hangzhou showed that the 

optimized strategy in which waste is transported preferentially to the nearest thermal treatment facilities is relatively 

better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in 

energy production from waste avoiding energy production by traditional power plants. In the whole system, the 

methane released from the landfill is a primary pollutant to global warming and photochemical ozone formation, and 

the hydrogen chloride and ammonia contribute the most to acidification. Materials recycling and incineration are of 

importance because of the avoided impacts. 

There were significant differences in most of the potential environmental impacts before and after the free 

shopping bags made of non-recyclable plastic were prohibited. It is evident that approximately 18 000 tonnes of 

waste is avoided per year after the free shopping bags were forbidden, and about 1 800 tonnes more plastics per year 

is going to be recycled due to the enhancement of recyclable proportion. This makes a great contribution to reducing 

greenhouse gases and impacts of nutrient enrichment and acidification. Moreover, it is also advantageous that the 

material and resource consumption for the production of bags is avoided. The results of the sensitivity analysis 

indicate that the amount of avoided plastic bags affected the environmental impacts a little bit and the proportion of 

plastic recycling showed to be of no consequence. However, it showed a large influence on nutrient enrichment, 

global warming and photochemical ozone formation if the recyclable plastic bags were substituted by paper bags due 



 

to the pollution and material consumption in paper production. 

LCA methodology provides a systematic and holistic method to evaluate the environmental impacts and 

benefits from solid waste systems and their upstream and downstream related activities. EASEWASTE, which is a 

model based on LCA, can be used as a tool for supporting decisions regarding solid waste management systems and 

strategies, wherever in worldwide, regional or local level. It demonstrates that LCA methodology and the model of 

EASEWASTE can be of great help for waste management optimization, especially for the investigation and 

development of a strategy for waste management in developing countries.  

References 

Christensen, T.H., Bhander, G., Lindvall, H., Larsen, A.W., Fruergaard, T., Damgaard, A., Manfredi, S., Boldrin, A., 

Riber, C. & Hauschild, M. (2007) Experience with the use of LCA-modelling (EASEWASTE) in waste 

management. Waste Management Research, 25, 257-262 

Hansen, T.L., Bhander, G.S. & Christensen, T.H. (2006a). Life cycle modelling of environmental impacts of 

application of processed organic municipal solid waste on agricultural land (EASEWASTE). Waste 

Management Research, 24, 153-166 

Hansen, T.L., Christensen, T.H. & Schmidt, S. (2006b) Environmental modelling of use of treated organic waste on 

agricultural land: a comparison of existing models for life cycle assessment of waste systems. Waste 

Management Research, 24, 141-152 

Kirkeby, J.T., Birgisdottir, H., Bhander, G.S., Hauschild, M. & Christensen, T.H. (2007) Modelling of environmental 

impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE. Waste management, 

27, 961-970 

Kirkeby, J.T., Birgisdottir, H., Hansen, T.L., Christensen T.H., Bhander, G.S. & Hauschild, M. (2006a) 

Environmental assessment of solid waste systems and technologies: EASEWASTE. Waste Management 

Research, 24, 3-15 



 

Kirkeby, J.T., Birgisdottir, H., Hansen, T.L., Christensen T.H., Bhander, G.S. & Hauschild, M. (2006b) Evaluation of 

environmental impacts from municipal solid waste management in the municipality of Aarhus, Denmark 

(EASEWASTE). Waste Management Research, 24, 16-26 

Li, J.H., Wang, W. & Wang, H.T. (2007). Planning and management of urban household refuse, China Environmental 

Sciences Press, Beijing, China 

Nie, Y.F. (2000). Technological handbook for waste treatment-solid waste, pp. 27-37. Chemical Industry Press, 

Beijing, China 

Riber, C., Bhander, G.S. & Christensen T.H. (2008). Environmental assessment of waste incineration in a 

life-cycle-perspective (EASEWASTE). Waste Management & Research, 26, 96-103 

Tian, B.G., Si, J.T., Zhao, Y., Wang, H.T. & Hao, J.M. (2007) Approach of technical decision-making by element 

flow analysis and Monte-Carlo simulation of municipal solid waste stream. Journal of Environmental 

Sciences, 19, 633-640 

Wang, H.T. & Nie, Y.F. (2001a) Municipal solid waste characteristics and management in China. Journal of the Air 

and Waste Management Association, 51(2), 250-263 

Wang, H.T. & Nie, Y.F. (2001b) Remedial strategies for municipal solid waste management in China. Journal of the 

Air and Waste Management Association, 51(2), 264-272 

Wenzel, H., Hauschild, M. & Alting, L. (1997) Environmental Assessment of Products, Vol.1: Methodology, Tools 

and Case Studies in Product Development. Institute of Product Development, Kluwer Academic Publishers, 

Hingham, MA. USA. 


