27 research outputs found

    Molar crown and root size relationship in anthropoid primates: 14th International Symposium on Dental Morphology, Greifswald

    No full text
    14th International Symposium on Dental Morphology, Greifswald, August 2008: Selected papersThe Tuatara, Sphenodon, is a small reptile currently restricted to islands off the coast of New Zealand where it feeds mainly on arthropods. A widely held misconception is that ‘Sphenodon does not have real teeth’ and instead possesses ‘serrations on the jaw bone’. One hatchling and one adult dentary were examined under SEM. Two longitudinal ground sections 100-μm thick were prepared through a lower canine tooth and its supporting tissues. There was clear evidence of aprismatic enamel (primless enamel) containing dentine tubules crossing the EDJ, dentine, cementum and a basalbone attachment. Enamel increments averaged ~3 μm/day and extension rates were ~30 μm/day. The base of the tooth consisted of basal attachment bone that graded from few cell inclusions to lamella or even Haversian-like bone with evidence of remodeling. A string of sclerosed pulp-stone like structures filled the pulp chamber and were continuous with the bone of attachment. Bone beneath the large central nutrient mandibular (Meckel’s) canal was quite unlike lamella bone and appeared to be fast growing and to contain wide alternating cell-rich and cell-free zones. Bone cells were rounded (never fusiform) and had few, if any, canaliculi. The dentine close to the EDJ formed at about the same rate as enamel but also contained longer period increments ~100 μm apart. These were spaced appropriately for monthly lunar growth bands, which would explain the basis of the banding pattern observed in the fast growing basal bone beneath the Meckel’s canal.J.A. Kieser, T. Tkatchenko, C. Dean, M.E.H. Jones, W. Duncan, N.J. Nelso

    SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa

    No full text
    Sporulation in aerial hyphae of Streptomyces coelicolor involves profound changes in regulation of fundamental morphogenetic and cell cycle processes to convert the filamentous and multinucleoid cells to small unigenomic spores. Here, a novel sporulation locus consisting of smeA (encoding a small putative membrane protein) and sffA (encoding a SpoIIIE/FtsK-family protein) is characterized. Deletion of smeA-sffA gave rise to pleiotropic effects on spore maturation, and influenced the segregation of chromosomes and placement of septa during sporulation. Both smeA and sffA were expressed specifically in apical cells of sporogenic aerial hyphae simultaneously with or slightly after Z-ring assembly. The presence of smeA-like genes in streptomycete chromosomes, plasmids and transposons, often paired with a gene for a SpoIIIE/FtsK- or Tra-like protein, indicates that SmeA and SffA functions might be related to DNA transfer. During spore development SffA accumulated specifically at sporulation septa where it colocalized with FtsK. However, sffA did not show redundancy with ftsK, and SffA function appeared distinct from the DNA translocase activity displayed by FtsK during closure of sporulation septa. The septal localization of SffA was dependent on SmeA, suggesting that SmeA may act as an assembly factor for SffA and possibly other proteins required during spore maturation
    corecore