85 research outputs found

    Neutral Atmosphere Properties Determining D-region Electron Densities

    Get PDF
    The increasing discoveries of various manifestations of meteorological control of the D region ionization and the growth of techniques for its measurement provide a challenge to meteorologists to test their insight into middle atmosphere processes with the physical interpretation of D layer phenomena. Models for ion production due to photoionization of minor atmospheric nitric oxide by quasi-monochromatic solar Lyman-alpha radiation are presented. A ground based measuring technique using low frequency radio reflection heights is briefly described and an approach to the interpretation of data acquired by this method is discussed. It is shown that D region electron density variations can provide an efficient diagnostic tool for the detection of perturbations of the circulation state of the middle atmosphere

    Middle Atmosphere Program. Handbook for MAP, Volume 10

    Get PDF
    The contributions of ground based investigations to the study of middle atmospheric phenomena are addressed. General topics include diagnostics of the middle atmosphere from D region properties, winter anomaly, seasonal variations and disturbances, dynamics and theoretical models, ground based tracking of winds and waves, lower thermosphere phenomena, and solar-terrestrial influences

    Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    Get PDF
    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. An discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

    Observations of, and sources of the spatial and temporal variability of ozone in the middle atmosphere on climatological time scales (OZMAP) and equatorial dynamics: Seasonal variations of ozone trends

    Get PDF
    The long term trends (least square linear regression with time) of ozone content at seven European, seven North American, three Japanese and two tropical stations during 21 years (1964 to 1984) are analyzed. In all regions negative trends are observed during the 1970s, but are partly compensated by limited periods of positive trends during the late 1960s and late 1970s. Solely the North American ozone data show negative trends in all 10 year periods. When the long term ozone trends are evaluated for each month of the year separately, a seasonal variation is revealed, which in Europe and North America has largest negative trends in late winter and spring. While in Europe the negative trends in winter/spring are partly compensated by positive trends in summer, in North America the summer values reach only zero, retaining the significant negative trend in annual mean values. In contrast to the antarctic ozone hole, the spring reduction of ozone in Europe and in North America is associated with stratospheric temperatures increasing in the analyzed period and therefore is consistent with the major natural ozone production and loss processes

    Evidence of CO2-induced progressive cooling of the middle atmosphere derived from radio observations

    Get PDF
    Reflection heights of low frequency radio waves in midlatitude summer, which are closely associated with the neutral atmosphere isobaric level of 0.0052 hPa, exhibit a statistically significant downgoing trend from 1962 to 1987. This indicates a systematic decrease of air pressure at 80 km height by 10.3 plus or minus 4.9 percent over this period, to be regarded as a sufficient evidence of a true signal of progressive cooling of the middle atmosphere, expected with the growing content of CO2 and other greenhouse bases in the atmosphere. It is quantitatively consistent with a temperature decrease at the stratopause by about 4 K, as predicted by the recent model of interactive greenhouse and ozone processes of Brasseur and de Rudder (1987)

    A next generation measurement of the electric dipole moment of the neutron at the FRM II

    Get PDF
    In this paper we discuss theoretical motivations and the status of experimental searches to find time-reversal symmetry-violating electric dipole moments (EDM). Emphasis is given to a next generation search for the EDM of the neutron, which is currently being set up at the FRM II neutron source in Garching, with an ultimate sensitivity goal of 5 × 10−28 cm (3σ). The layout of the apparatus allows for the detailed investigation of systematic effects by combining various means of magnetic field control and polarized UCN optics. All major components of the installations are portable and can be installed at the strongest available UCN beam

    Primary B-Cell Deficiencies Reveal a Link between Human IL-17-Producing CD4 T-Cell Homeostasis and B-Cell Differentiation

    Get PDF
    IL-17 is a pro-inflammatory cytokine implicated in autoimmune and inflammatory conditions. The development/survival of IL-17-producing CD4 T cells (Th17) share critical cues with B-cell differentiation and the circulating follicular T helper subset was recently shown to be enriched in Th17 cells able to help B-cell differentiation. We investigated a putative link between Th17-cell homeostasis and B cells by studying the Th17-cell compartment in primary B-cell immunodeficiencies. Common Variable Immunodeficiency Disorders (CVID), defined by defects in B-cell differentiation into plasma and memory B cells, are frequently associated with autoimmune and inflammatory manifestations but we found no relationship between these and Th17-cell frequency. In fact, CVID patients showed a decrease in Th17-cell frequency in parallel with the expansion of activated non-differentiated B cells (CD21lowCD38low). Moreover, Congenital Agammaglobulinemia patients, lacking B cells due to impaired early B-cell development, had a severe reduction of circulating Th17 cells. Finally, we found a direct correlation in healthy individuals between circulating Th17-cell frequency and both switched-memory B cells and serum BAFF levels, a crucial cytokine for B-cell survival. Overall, our data support a relationship between Th17-cell homeostasis and B-cell maturation, with implications for the understanding of the pathogenesis of inflammatory/autoimmune diseases and the physiology of B-cell depleting therapies
    • …
    corecore