141 research outputs found

    Bounds on the mass and abundance of dark compact objects and black holes in dwarf spheroidal galaxy halos

    Get PDF
    We establish new dynamical constraints on the mass and abundance of compact objects in the halo of dwarf spheroidal galaxies. In order to preserve kinematically cold the second peak of the Ursa Minor dwarf spheroidal (UMi dSph) against gravitational scattering, we place upper limits on the density of compact objects as a function of their assumed mass. The mass of the dark matter constituents cannot be larger than 1000 solar masses at a halo density in UMi's core of 0.35 solar masses/pc^3. This constraint rules out a scenario in which dark halo cores are formed by two-body relaxation processes. Our bounds on the fraction of dark matter in compact objects with masses >3000 solar masses improve those based on dynamical arguments in the Galactic halo. In particular, objects with masses 105\sim 10^{5} solar masses can comprise no more than a halo mass fraction 0.01\sim 0.01. Better determinations of the velocity dispersion of old overdense regions in dSphs may result in more stringent constraints on the mass of halo objects. For illustration, if the preliminary value of 0.5 km/s for the secondary peak of UMi is confirmed, compact objects with masses above 100\sim 100 solar masses could be excluded from comprising all its dark matter halo.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter

    Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    Get PDF
    FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD

    Nucleus of the Solitary Tract Serotonin 5-HT2C Receptors Modulate Food Intake

    Get PDF
    The authors wish to thank members of staff of the Medical Research Facility, University of Aberdeen, Ms. Raffaella Chianese and Dr. Susan Jalicy, for technical assistance. PX330 and PX552 plasmids were a gift from Prof. Feng Zhang (Massachusetts Institute of Technology, Massachusetts, USA). DREADD vectors were a gift from Prof. Bryan Roth (University of North Carolina at Chapel Hill, North Carolina, USA). PomcDsRED and PomcNEO mice were a gift from Prof. Malcolm Low (University of Michigan, Michigan, USA). Codes to analyze operant-responding for food were a gift from Dr. Vladimir Orduña Trujillo (National Autonomous University of Mexico, Mexico). This work was supported by the Wellcome Trust (L.K.H.; WT098012), Wellcome Trust and the University of Aberdeen (G.D.; 105625/Z/14/Z), Biotechnology and Biological Sciences Research Council (L.K.H., BB/K001418/1, BB/N017838/1; and J.J.R., BB/K017772/1), Medical Research Council (J.J.R., MR/L002620/1; G.D., MR/P009824/1; L.K.H., J.J.R., G.D., MC/PC/15077), British Society of Neuroendocrinology (G.D.), NIH and the Marilyn H. Vincent Foundation (M.G.M.; DK056731, DK034933).Peer reviewedPublisher PD

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Chronic Activation of γ2 AMPK Induces Obesity and Reduces β Cell Function.

    Get PDF
    Despite significant advances in our understanding of the biology determining systemic energy homeostasis, the treatment of obesity remains a medical challenge. Activation of AMP-activated protein kinase (AMPK) has been proposed as an attractive strategy for the treatment of obesity and its complications. AMPK is a conserved, ubiquitously expressed, heterotrimeric serine/threonine kinase whose short-term activation has multiple beneficial metabolic effects. Whether these translate into long-term benefits for obesity and its complications is unknown. Here, we observe that mice with chronic AMPK activation, resulting from mutation of the AMPK γ2 subunit, exhibit ghrelin signaling-dependent hyperphagia, obesity, and impaired pancreatic islet insulin secretion. Humans bearing the homologous mutation manifest a congruent phenotype. Our studies highlight that long-term AMPK activation throughout all tissues can have adverse metabolic consequences, with implications for pharmacological strategies seeking to chronically activate AMPK systemically to treat metabolic disease
    corecore