4,315 research outputs found

    Chandra Detection of Highest Redshift (z~6) Quasars in X-rays

    Get PDF
    We report on Chandra observations of three quasars SDSSP J083643+005453, SDSSP J103027+052455, and SDSSP J130608+035626 at redshifts 5.82, 6.28 and 5.99 respectively. All the three sources are clearly detected in the X-ray band, up to rest frame energies of ~55 keV. These observations demonstrate the unprecedented sensitivity of Chandra to detect faint sources in relatively short exposure times (5.7--8.2 ksec). The broad band X-ray properties of these highest redshift quasars do not appear to be any different from their lower redshift cousins. Spectra of the sources could not be determined with only few counts detected. Observations with XMM-Newton will be able to constrain the spectral shapes, if they are simple. Determination of complex spectra in a reasonable amount of time, however, will have to await next generation of X-ray missions.Comment: Submitted to ApJ Letter

    Giant electrocaloric effect in thin film Pb Zr_0.95 Ti_0.05 O_3

    Full text link
    An applied electric field can reversibly change the temperature of an electrocaloric material under adiabatic conditions, and the effect is strongest near phase transitions. This phenomenon has been largely ignored because only small effects (0.003 K V^-1) have been seen in bulk samples such as Pb0.99Nb0.02(Zr0.75Sn0.20Ti0.05)0.98O3 and there is no consensus on macroscopic models. Here we demonstrate a giant electrocaloric effect (0.48 K V^-1) in 300 nm sol-gel PbZr0.95Ti0.05O3 films near the ferroelectric Curie temperature of 222oC. We also discuss a solid state device concept for electrical refrigeration that has the capacity to outperform Peltier or magnetocaloric coolers. Our results resolve the controversy surrounding macroscopic models of the electrocaloric effect and may inspire ab initio calculations of electrocaloric parameters and thus a targeted search for new materials.Comment: 5 pages, 4 figure

    Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers

    Full text link
    Polarized Neutron Reflectometry and magnetometry measurements have been used to obtain a comprehensive picture of the magnetic structure of a series of La{2/3}Sr{1/3}MnO{3}/Pr{2/3}Ca{1/3}MnO{3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0<=t_A<=7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to FM inclusions within the AFM matrix was found to be maximized at t_A~3 nm. This enhancement of the FM moment occurs at the matching between layer thickness and cluster size, where the FM clusters would find the optimal strain conditions to be accommodated within the "non-FM" material. These results have important implications for tuning phase separation via the explicit control of strain.Comment: 4 pages, submitted to PR

    A nano-biosensor for DNA sequence detection using absorption spectra of SWNT-DNA composite

    Get PDF
    biosensor based on Single Walled Carbon Nanotube (SWNT)-Poly (GT)n ssDNA hybrid has been developed for medical diagnostics. The absorption spectrum of this assay is determined with the help of a Shimadzu UV-VIS-NIR spectrophotometer. Two distinct bands each containing three peaks corresponding to first and second van Hove singularities in the density of states of the nanotubes were observed in the absorption spectrum. When a single-stranded DNA (ssDNA) having a sequence complementary to probic DNA is added to the ssDNA-SWNT conjugates, hybridization takes place, which causes the red shift of absorption spectrum of nanotubes. On the other hand, when the DNA is noncomplementary, no shift in the absorption spectrum occurs since hybridization between the DNA and probe does not take place. The red shifting of the spectrum is considered to be due to change in the dielectric environment around nanotubes. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2212

    Very weak electron-phonon coupling and strong strain coupling in manganites

    Get PDF
    The coupling of the manganite stripe phase to the lattice and to strain has been investigated via transmission electron microscopy studies of polycrystalline and thin film manganites. In polycrystalline \PCMOfiftwo a lockin to q/a=0.5q/a^*=0.5 in a sample with x>0.5x>0.5 has been observed for the first time. Such a lockin has been predicted as a key part of the Landau CDW theory of the stripe phase. Thus it is possible to constrain the size of the electron-phonon coupling in the CDW Landau theory to between 0.04% and 0.05% of the electron-electron coupling term. In the thin film samples, films of the same thickness grown on two different substrates exhibited different wavevectors. The different strains present in the films on the two substrates can be related to the wavevector observed via Landau theory. It is demonstrated that the the elastic term which favours an incommensurate modulation has a similar size to the coupling between the strain and the wavevector, meaning that the coupling of strain to the superlattice is unexpectedly strong.Comment: 6 pages, 7 figure

    The structure of intercalated water in superconducting Na0.35_{0.35}CoO2_{2}\cdot1.37D2_{2}O: Implications for the superconducting phase diagram

    Full text link
    We have used electron and neutron powder diffraction to elucidate the structural properties of superconducting \NaD. Our measurements show that our superconducting sample exhbits a number of supercells ranging from 1/3a{1/3}a^{*} to 1/15a{1/15}a^{*}, but the most predominant one, observed also in the neutron data, is a double hexagonal cell with dimensions \dhx. Rietveld analysis reveals that \deut\space is inserted between CoO2_{2} sheets as to form a layered network of NaO6_{6} triangular prisms. Our model removes the need to invoke a 5K superconducting point compound and suggests that a solid solution of Na is possible within a constant amount of water yy.Comment: 4 pages, 3 figure

    The information paradox: A pedagogical introduction

    Full text link
    The black hole information paradox is a very poorly understood problem. It is often believed that Hawking's argument is not precisely formulated, and a more careful accounting of naturally occurring quantum corrections will allow the radiation process to become unitary. We show that such is not the case, by proving that small corrections to the leading order Hawking computation cannot remove the entanglement between the radiation and the hole. We formulate Hawking's argument as a `theorem': assuming `traditional' physics at the horizon and usual assumptions of locality we will be forced into mixed states or remnants. We also argue that one cannot explain away the problem by invoking AdS/CFT duality. We conclude with recent results on the quantum physics of black holes which show the the interior of black holes have a `fuzzball' structure. This nontrivial structure of microstates resolves the information paradox, and gives a qualitative picture of how classical intuition can break down in black hole physics.Comment: 38 pages, 7 figures, Latex (Expanded form of lectures given at CERN for the RTN Winter School, Feb 09), typo correcte

    Chiral extrapolation beyond the power-counting regime

    Get PDF
    Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately independent of the range of quark masses considered. By using recent precision, quenched lattice results, the extrapolation is tested directly by truncating the analysis to a set of points above 380 MeV, while being blinded of the results probing deeply into the chiral regime. The result is a successful extrapolation to the chiral regime.Comment: 8 pages, 18 figure
    corecore