3 research outputs found

    Understanding Chlorite and Chlorate Formation Associated with Hypochlorite Generation at Boron Doped Diamond Film Anodes

    No full text
    This research investigated reaction pathways for formation of chlorite and chlorate when using boron doped diamond (BDD) film anodes for generating hypochlorite. Batch electrolysis and voltammetry experiments were performed to investigate the rates and potential dependency of hypochlorite and chlorite oxidation. Density functional theory (DFT) modeling was used to investigate possible reaction pathways. The DFT simulations included reactions with hydrogen terminated surfaces, and with surface sites produced by anodic polarization, namely: ≡C•, =C•H, ≡C–O• and =C•HO. Oxychlorine radicals (ClO•, ClO2 •) were found to chemically adsorb to both secondary and tertiary carbon atoms on the BDD surface. These chemisorbed intermediates could react with hydroxyl radicals to regenerate the original chlorine oxyanion (ClO− or ClO2 −), and produce ≡C–O• and =C•HO sites on the BDD surface. The ≡C–O• and =C•HO sites also reacted with oxychlorine radicals to form chemisorbed intermediates, which could then be converted to higher oxidation states (ClO2 −, ClO3 −) via reaction with hydroxyl radicals. The predominant pathway for chlorite and chlorate production appears to involve oxidation of HOCl or HClO2 via direct electron transfer, followed by reaction of ClO• or ClO2 • with a hydroxyl radical

    ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle.

    No full text
    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA-disseminated and implemented in over 70 countries globally-is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease
    corecore