1,778 research outputs found
A finite deformation Cosserat continuum model for uncured carbon fibre composites
A new three-dimensional, finite deformation Cosserat continuum model for the elastic response of uncured carbon fibre composites is presented. The new composite process model captures the bending contribution of bundles of fibres at the microscale within a mesoscale continuum description of a composite ply. This is achieved by introducing higher-order, independent rotational degrees of freedom into the continuum formulation. This paper demonstrates the inclusion of such mechanics is essential to accurately model various bending responses induced during typical composite manufacturing processes. This includes large deformation forming, finite strain consolidation and wrinkling (the formation of an unwanted defect). If such mechanics are not included, the literature demonstrates the resulting finite element solutions have a pathological dependence on the mesh size. As a result, simulations require users to fit mesh-dependent material parameters, which limits confidence in their predictive capabilities. The Cosserat continuum, which can be seen as a form of the regularised continuum model, overcomes these challenges. In particular, this paper presents details of the finite element formulation of the new continuum model within a nonlinear Taylor–Hood Cosserat Element. Implementation details of embedding this new element within the commercial code Abaqus are given, alongside a series of increasingly complex validation simulations. Notably, the examples include modelling the formation of internal fibre wrinkles and large deformation forming, which involves complex ply-to-ply and tool-to-ply contact. The paper concludes by describing: (1) how the elastic Cosserat model can be integrated into existing large deformation process models in the literature. The approach set out readily allows researchers to include the important effects of resin flow, cure kinetics and temperature distribution, not considered in this contribution, and (2) how it is envisaged that the ply scale model can be naturally scaled up to large laminate scale simulation using mathematical upscaling techniques
Inertial range scaling in numerical turbulence with hyperviscosity
Numerical turbulence with hyperviscosity is studied and compared with direct
simulations using ordinary viscosity and data from wind tunnel experiments. It
is shown that the inertial range scaling is similar in all three cases.
Furthermore, the bottleneck effect is approximately equally broad (about one
order of magnitude) in these cases and only its height is increased in the
hyperviscous case--presumably as a consequence of the steeper decent of the
spectrum in the hyperviscous subrange. The mean normalized dissipation rate is
found to be in agreement with both wind tunnel experiments and direct
simulations. The structure function exponents agree with the She-Leveque model.
Decaying turbulence with hyperviscosity still gives the usual t^{-1.25} decay
law for the kinetic energy, and also the bottleneck effect is still present and
about equally strong.Comment: Final version (7 pages
Acetoin is a key odor for resource location in the giant robber crab Birgus latro
The terrestrial and omnivorous robber crab Birgus latro inhabits islands of the Indian Ocean and the Pacific Ocean. The animals live solitarily but occasionally gather at freshly opened coconuts or fructiferous arenga palms. By analyzing volatiles of coconuts and arenga fruit we identified five compounds, including Acetoin, which are present in both food sources. In a behavioral screen performed in the crabs’ habitat, a beach on Christmas Island, we found that of 15 tested fruit compounds Acetoin was the only volatile eliciting significant attraction. Hence, Acetoin might play a key role in governing the crabs’ aggregation behavior at both food sources
Herding model and 1/f noise
We provide evidence that for some values of the parameters a simple agent
based model, describing herding behavior, yields signals with 1/f power
spectral density. We derive a non-linear stochastic differential equation for
the ratio of number of agents and show, that it has the form proposed earlier
for modeling of 1/f^beta noise with different exponents beta. The non-linear
terms in the transition probabilities, quantifying the herding behavior, are
crucial to the appearance of 1/f noise. Thus, the herding dynamics can be seen
as a microscopic explanation of the proposed non-linear stochastic differential
equations generating signals with 1/f^beta spectrum. We also consider the
possible feedback of macroscopic state on microscopic transition probabilities
strengthening the non-linearity of equations and providing more opportunities
in the modeling of processes exhibiting power-law statistics
A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature
Melatonin (N-acetyl-5-methoxy-tryptamine) is a mammalian neurohormone, antioxidant and signaling molecule that was first discovered in plants in 1995. The first studies investigated plant melatonin from a human perspective quantifying melatonin in foods and medicinal plants and questioning whether its presence could explain the activity of some plants as medicines. Starting with these first handful of studies in the late 1990s, plant melatonin research has blossomed into a vibrant and active area of investigation and melatonin has been found to play critical roles in mediating plant responses and development at every stage of the plant life cycle from pollen and embryo development through seed germination, vegetative growth and stress response. Here we have utilized a systematic approach in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocols to reduce bias in our assessment of the literature and provide an overview of the current state of melatonin research in plants, covering 1995–2021. This review provides an overview of the biosynthesis and metabolism of melatonin as well as identifying key themes including: abiotic stress responses, root development, light responses, interkingdom communication, phytohormone and plant signaling. Additionally, potential biases in the literature are investigated and a birefringence in the literature between researchers from plant and medical based which has helped to shape the current state of melatonin research. Several exciting new opportunities for future areas of melatonin research are also identified including investigation of non-crop and non-medicinal species as well as characterization of melatonin signaling networks in plants
Characterisation of inter-ply shear in uncured carbon fibre prepreg
Understanding the inter-ply shear behaviour of uncured carbon fibre prepreg is fundamental to avoiding process-induced defects during manufacturing of large-scale components. Shear tests for AS4/8552 are compared to a one-dimensional viscoelastic–plastic model for inter-ply shear. The paper presents a methodology capable of determining the parameters of temperature, rate and pressure required for minimum resistance to movement of a prepreg. Investigating the joint strength and friction values individually shows that friction increases with temperature, contrary to previous work, and that the new value of joint strength is predominant at lower temperatures. Rate dependent variables are strongly linked to the resin behaviour, confirming the need for a viscoelastic model. Simple application to industrial scenarios is discussed along with more complex process modelling
Double trouble: Co-infection of potato with the causal agents of late and early blight
Global potato production is plagued by multiple pathogens, amongst which are Phytophthora infestans and Alternaria solani, the causal agents of potato late blight and early blight, respectively. Both these pathogens have different lifestyles and are successful pathogens of potato, but despite observations of both pathogens infecting potato simultaneously in field conditions, the tripartite interactions between potato and these two pathogens are so far poorly understood. Here we studied the interaction of A. solani and P. infestans first in vitro and subsequently in planta both in laboratory and field settings. We found that A. solani can inhibit P. infestans in terms of growth in vitro and also infection of potato in both laboratory experiments and in an agriculturally relevant field setting. A. solani had a direct inhibitory effect on P. infestans in vitro and compounds secreted by A. solani had both an inhibitory and disruptive effect on sporangia and mycelium of P. infestans in vitro. In planta infection bioassays revealed that simultaneous co-inoculation of both pathogens resulted in larger necrotic lesions than single inoculations; however, consecutive inoculations only resulted in larger lesions when A. solani was inoculated after P. infestans. These results indicate that the order in which these pathogens attempt to colonize potato is important for the disease outcome and that the influence of plant pathogens on each other should be accounted for in the design of future disease control strategies in crops such as potato
- …