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Characterisation of Inter-Ply Shear in Uncured Carbon
Fibre Prepreg

S. Erland, T. J. Dodwell and R. Butler1

Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK.

Abstract

Understanding the inter-ply shear behaviour of uncured carbon fibre prepreg is

fundamental to avoiding process-induced defects during manufacturing of large-

scale components. Shear tests for AS4/8552 are compared to a one-dimensional

viscoelastic-plastic model for inter-ply shear. The paper presents a methodol-

ogy capable of determining the parameters of temperature, rate and pressure

required for minimum resistance to movement of a prepreg. Investigating the

joint strength and friction values individually shows that friction increases with

temperature, contrary to previous work, and that the new value of joint strength

is predominant at lower temperatures. Rate dependent variables are strongly

linked to the resin behaviour, confirming the need for a viscoelastic model.

Simple application to industrial scenarios is discussed along with more complex

process modelling.

Keywords: A. Prepreg; A. Laminates; B. Interface/interphase; C. Analytical

modelling.

1. Introduction

Whilst the basic advantages of composite materials are well proven, they are

often compromised by high costs, long development time, and poor quality due
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to manufacturing defects. This is particularly the case for the complex struc-

tures found in large aerospace applications. If laminates are to conform to a5

surface with curvature during forming or consolidation, plies within a laminate

must shear relative to one another. If plies are prevented from shearing the pro-

cess becomes susceptible to generating a host of manufacturing induced defects

including ply wrinkling [1, 2, 3, 4] (e.g. Fig. 1), part distortion [5, 6] and poor

consolidation [7]. To limit the formation of such defects, the characterisation10

of shear properties of materials is vital to not only determine optimal shear

conditions for manufacturability, but to provide input parameters for process

simulations [3] and manufacturing design methods [8].

A number of studies [9, 10] have investigated inter-ply slip properties of un-

cured carbon fibre pre-preg. In each case the shear rheology is characterised15

by a temperature dependent coefficient of friction. Using an inter-ply slip-rig

similar to that used in this contribution (Section 3), the studies showed sig-

nificant variability between different generations of carbon fibre pre-preg [10].

However, in each case, inter-ply friction displayed a convex dependence on tem-

perature, attaining a minimum at an intermediate manufacturing temperature.20

The work attributed the initial decrease in friction to hydrodynamic lubrication

of the inter-ply region as the resin viscosity decreases with temperature, whilst

the subsequent increase was due to intensified intermingling of fibres at higher

temperatures. Further experimental work has therefore focused on determin-

ing surface roughness measures [10] and understanding matrix distribution at25

different stages of the various processes, whilst using Stribeck theory [9, 11] to

determine different regimes of hydrodynamic frictional behaviour.

The use of a frictional model suggests that the layered structure is infinitely

stiff in shear, and that any deformation occurs in the form of slip at the interface

above a critical value of stress. Stress/strain traces from the work of Larberg et30
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al. [10] suggest this to be a simplification, noting the presence of some pre-yield

stiffness before a post-yield response after a gradual transition. For forming

processes in which shear strains are relatively small (e.g. consolidation over a

corner radius, Section 5.7.) the purely frictional model can significantly overesti-

mate the shear stresses. Whilst these general observations are supported by this35

paper, we extend the characterisation of inter-ply shear behaviour developed in

[10] to account for a number of key dependencies not previously investigated;

primarily the strong rate dependency, arising from the viscoelastic contribution

of the resin.

In Section 2 we introduce a one-dimensional viscoelastic-plastic model which40

captures the behaviour observed in the literature, with Section 3 describing the

experimental method developed to validate it. This model, parameterised by

the experimental data (Section 4), provides simple metrics by which to com-

pare through-thickness shear properties (Section 5), for different materials and

manufacturing conditions. We also consider application to two different man-45

ufacturing scenarios, forming and consolidation over corner a radius (Section

5.7). Whilst previous work suggests optimum manufacturing conditions are in-

dependent of manufacturing process, the parameterised model presented here

suggests process dependent conditions for optimal manufacturability. The pa-

per concludes with a summary of the key findings, and possible future avenues50

of research.

2. One dimensional viscoelasto-plastic model for inter-ply shear

Firstly, a one-dimensional viscoelasto-plastic model for inter-ply shear of

uncured laminates is introduced, before the process by which the modelling

parameters can be constructed from the experiments is described.55

The pre-yield behaviour is decomposed into rate dependent and independent
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parts. A constitutive law with these characteristics, is given by the relationship

τ =

(
G+ η

dγ

dt

)
γ = Kγ (1)

where G is the rate independent elastic shear stiffness, η the coefficient of viscos-

ity and dγ/dt the strain rate. The parameter K denotes the overall initial rate

dependent shear stiffness. Shear strains encountered in both industrial form-60

ing processes and the experimental setup can be large (i.e. γ > 0.5), therefore

‘true’ strain measures are considered. If u(t) = Rt is the displacement for some

constant displacement rate R, h is the through thickness dimension (where for

the material used, individual ply thickness h/2 = 0.25mm) it follows that

γ = ln

(
1 +

Rt

h

)
and

dγ

dt
=

R

h+Rt
. (2)

For small shear strains such as those seen in the initial response, i.e. γ <0.15,65

t is small and it can be assumed that dγ/dt ' R/h.

It is important to select an appropriate thickness value. Considering the

structure of a laminate as being a series of thick stiff fibrous layers and thin

weak resin layers, it seems logical to assume that deformation will localise to

the resin layer. Observing the formation of the model however, we can see that70

changing the thickness will result in a simple ratio change, so long as the same

thickness is used throughout. For the purposes of this paper, in which tests

are conducted for two plies and one deformable interface, we take h to be twice

the ply thickness such that the results can be more readily scaled to laminate

deformation. This approximation is discussed in more detail in Section 5.75

The onset of inter-ply slip is defined by a Mohr-Coulomb yield criterion

τc = µσn + j (3)

4



such that µ is the coefficient of friction, σn is the normal stress and j a measure

of joint strength. Joint strength initially appears similar in concept to tack, how-

ever the parameter presented here specifically describes the shear joint strength,

whereas tack relates to the tensile joint strength.80

Supposing yield has occurred (i.e. τ ≥ τc), an additional strain increment is

applied ∆γ. This strain increment can be decomposed into viscoelastic (∆γve)

and plastic (∆γp) contributions, so that ∆γ = ∆γve + ∆γp. It follows that

∆τ = K∆γve = K(∆γ −∆γp). (4)

The hardening rule, to account for the post yield stiffness, is then defined by

∆τ = H∆γp, (5)

where H is the strain-hardening parameter. Equating Eqs. (4) and (5) it85

follows H∆γp = K(∆γ − ∆γp) so that ∆γp = K
H+K ∆γ. Therefore the post

yield response is given by the expression

∆τ = Gt∆γ = K

(
1− K

K +H

)
∆γ (6)

where Gt is termed the consistent tangent stiffness. Rearranging for the hard-

ening parameter gives the expression

H =
KGt

K −Gt
. (7)

This model gives an idealised bi-linear response, as shown in the stress-90

strain plot Fig. 11. The modelling parameters can be approximated from the

experimental stress-strain data by first constructing two lines of best fit from

the pre and post yield load paths. The gradients of which are approximations

5



to K and Gt (Fig. 11), whilst their intercept gives the critical shear stress τc.

First, to determine G and η, the pre-yield gradient K is calculated for in-95

creasing strain rates R, as shown in Fig. 2. It follows from Eq. (1), that the

rate independent parameter G is given by the y-intercept, whilst η can be fitted

in the least square sense, in this paper using Matlab’s inbuilt function cftool.

Secondly, the coefficient of friction µ and joint strength j are determined by

calculating τc over a range of confining pressures σn. Figure 3 shows a typical100

plot, fitting a straight line to the data, the y-intercept gives the joint strength

j, whilst the gradient is the coefficient of friction µ. Finally the hardening

parameter H is determined by applying Eq. (7) using gradients K and Gt.

3. Experimental procedure, material and sample preparation

Figure 4 (Left), shows a schematic of the test rig which consisted of two105

independent components. Firstly, a lock-able hinged array connected to an

Instron load cell at (i), consisted of a pneumatic cylinder (ii) which pulled

together two plates (area, A = 50×50 mm2) wrapped in a single layer of carbon

fibre prepreg (iii). These plates clamped either side of a central plate (area, A =

100×150 mm2)(iv), also wrapped in a layer of carbon fibre prepreg, which was110

fixed to the bottom mounting of an Instron testing machine (v). The carbon

fibre was wrapped and clamped in such a way as to prevent movement of the

ply relative to the plate surface. The rig was mounted within an environmental

chamber, allowing the temperature of test to be controlled. The test procedure

was as follows: (1) test temperature was achieved in the environment chamber115

(2) the pressure in the pneumatic cylinder was controlled to generate a normal

clamping stress σn between the side and central plates (3) the Instron pulled the

upper part of the rig at a constant rate R = du/dt, whilst the load cell recorded

the force F . All experiments were carried out using AS4/8552, wrapped around
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each plate so that the fibres were oriented vertically (i.e in the direction of120

loading, referred to as 0◦). This material was chosen as it is effectively the

genesis material for a series of prepregs commonly used in the aerospace industry.

Note that although it was decided to focus on a single material, primarily due to

the quantity of tests being carried out, the modelling above can be applied to any

thermoset prepreg. Tests were conducted at a range of rates R, temperatures125

and confining pressures σn. Each test was conducted three times to ensure

repeatability of results. The set of tests carried out are summarised in the test

matrix, Table 1.

3.1. Rig calibration and measures to minimises sources of variability

Before carrying out these tests it was necessary to calibrate the rig for a130

material with a known coefficient of friction. A number of tests were carried

out using PTFE instead of CFRP; giving an average value of µ = 0.096, which

was within the documented range of 0.05-0.10 [12]. The following operational

caveats were noted:

Side plates: By rigging extensometers between the side and main plates135

it was possible to monitor any potential discrepancies between the crosshead

displacement and that of each plate. Over the course of several experiments it

was proven that differential movement did not occur to any noticable extent.

A similar technique was also employed to ensure that the side plates did not

rotate upon being loaded.140

Controlling constant confining pressure: It was reasoned that the load ap-

plied by the pressure cylinder could be monitored by observing the pressure

gauge on the air feed. Any fluctuations in this pressure would indicated a

change in lateral loading. Due to the relatively low loads required to slip the

interfaces it was also necessary to use a sufficiently accurate load cell with a145

maximum capacity of 1kN.
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Controlling temperature: Temperature was measured by means of a thermo-

couple attached to the edge of one of the side plates. As the plates themselves

are small and made of mild steel they have a fairly high coefficient of thermal

conductivity, therefore it was safe to assume that the temperature at the middle150

of the plate would not differ significantly from that at the edge, and was well

within the +/- 5◦C tolerance expected by industry in the manufacturing stages.

Consistency of sample: To ensure minimal out time from the freezer, each

sample was defrosted for 20 minutes and prepared immediately before testing

from larger cut sheets to avoid repeatedly defrosting the entire role of mate-155

rial. During the test regime the target temperature was reached and held for

5 minutes before pressure was applied to ensure the samples were fully heated.

Unfortunately, it was not possible to measure the expected change in ply thick-

ness during the test. As such, the thickness value used in Section 2 was assumed

to remain constant.160

4. Results

Figures 5 and 6 display stress/strain traces for tests conducted at a variety of

temperatures, pressures and rates. The traces show the same general behaviour,

with an initial stiff response changing to a less stiff response after a gradual yield.

Figure 7 shows how the joint strength j and coefficient of friction µ change165

with increasing temperature. Joint strength (Fig. 7 (Left)), strictly decreases

with increasing temperature. However, the coefficient of friction strictly in-

creases with temperature, Fig. 7 (Right). In Table 2 all values of j and µ with

associated regression coefficients are given. The variation of critical shear stress

τc against temperature is plotted in Fig. 8 with associated error bars, reaching170

a minimum at 90◦C.

The rate dependent data provides parameters for the viscoelastic model, see
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Table 3. The plots of G and η, shown in Fig. 9, show that both values strictly

decrease with temperature. However, strain hardening parameter H against

temperature displays a peaked response, reaching an apparent maximum at175

approximately 60◦C (Fig. 10).

Due to the manner in which modelling parameters are derived, there is a

mix between error bars and regression coefficients. Values which were drawn

directly from the stress/strain traces, i.e. K and τc, are shown with error bars

generated from repeat tests. The remaining modelling parameters are gathered180

from fitting data to these parameters, as such they are displayed with regression

coefficients as they were not repeated. Typically, the error bars were relatively

small, with an average error of 4-6% for K values and slightly more error (10-

12%) for τc values as a result of τc being dependent upon two testing variables.

5. Discussion185

5.1. Stress/strain traces

The stress/strain traces of Figs. 5 and 6 obtained for variable temperature,

pressure and rate show a similar response to those displayed by Larberg et al.

[10], whereby each plot has two distinct regions. The first region, characterized

by an initial stiffness, can be attributed to the shear behaviour of the two plies190

at small strains, before the interface yields. This is followed by a second re-

gion at a reduced stiffness. Figure 5 (Left) shows the influence of temperature

on these stress/strain traces. Increasing the temperature clearly reduces the

initial stiffness and the yield point of the material, confirming the influence of

the uncured resin on this initial response. Figure 5 (Right) shows the pressure195

dependency of the yield point, confirming the presence of some frictional be-

haviour. Interestingly, the initial stiffness is not affected whereas the post yield

response clearly becomes stiffer with increased pressure. This suggests that the
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initial response is governed by the viscous uncured resin, whereas the yield and

the post yield response are more frictional. The final trace, Fig. 6, further con-200

firms this, showing a considerable rate dependency in the initial load response,

thereby confirming the viscoelastic contribution of the resin. In order to better

investigate the influence of temperature, pressure and rate we can now consider

the new paramters derived in Section 2.

The bi-linear model developed in Section 2 is applied to a standard stress/strain205

trace in Fig. 11. From similar stress/strain traces, Larberg et al. [10], derive

a single coefficient of friction. Such a simple model is therefore not capable of

capturing the full shear behaviour observed. Models considering the material

to be elastic will also misrepresent uncured behaviour [13].

5.2. Interply yield210

Figure 8 is similar to results presented by Larberg et al. [10] and Dodwell

et al. [3], who both plotted coefficient of friction at yield against temperature.

Figure 8 differs in that τc is a combination of the effects of friction, µ, and the

new parameter, joint strength j. The plot shows an initial decrease in τc as

temperature increases, reaching a minimum at 90◦C, after which τc increases215

with temperature. Dividing the shear into two separate mechanisms, as shown

in Fig. 7, gives a better insight into the combined mechanics which contribute

to τc. Comparing the values of j in Fig. 7 (Left) with the values of τc in Fig.

8 we see that the parameter j dominates at lower temperatures suggesting that

pre-yield behaviour plays a more significant role at low temperatures. From220

Fig. 8 the minimum reached at 90◦C marks the point at which slip becomes the

dominant mechanism. The behaviour of µ is particularly important. Previous

work presented µ as a value with behaviour similar to the value of τc in this work,

suggesting that µ is initially high at low temperature then falls to a minimum

value before increasing again with temperature. This new model shows µ to be225
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minimal at low temperatures then strictly increasing as temperature increases.

A possible explanation is that at low temperatures the fibres within each

ply are separated by a thick layer of resin, formed from the resin rich zones

present on the surface of each ply. This reduces the inter-ply friction between

fibres and the response is dominated by the shearing of the resin rich region. As230

temperature increases the resin layer is initially maintained, with the softened

response being due to the lower shear modulus of the material at elevated tem-

perature. As the temperature rises further the resin flows into the dry core of

the plies [14], increasing fibre-fibre contact between adjacent plies. At this stage

the increased level of fibre-fibre contact means that the results are almost purely235

frictional. This is illustrated by Fig. 12 (Left), which shows a cross section of

unconsolidated AS4/8552 prepreg and Fig. 12 (Right) showing a cross-section

of the same material after it has been heated to 80◦C and had a normal stress

of 100kPa applied.

Figure 12 (Left) shows a large amount of resin towards the surface of the ply,240

with a very noticeable dry core. By contrast, in Fig. 12 (Right) the resin appears

to be distributed fairly uniformly following consolidation at temperature, with

more fibres on the outer edge. There is also a considerable reduction in ply

thickness as the resin has redistributed. This supports the hypothesis that

low temperature interaction will be dominated by the resin layer, whereas high245

temperature interactions will be increasingly influenced by fibre-fibre contact.

5.3. Viscoelastic parameters

By plotting K against dγ/dt (Fig. 2) we can determine the rate independent

elastic modulus G from the y-intersect. From Fig. 9 (Left) it is immediately

apparent that this value is very small when compared to the material response250

at even the slowest rate of deformation, confirming the importance of modelling

the initial response as a combined visco-elastic material.
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Figure 9 shows the variation of the rate independent part of K with temper-

ature. Figure 9 (Right) displays η values calculated via Eq. (1) and how this

value is also clearly influenced by temperature. Compared against Hexcel data255

sheets η is significantly higher than viscosity values quoted for pure 8552 resin

at similar temperatures [15]. This is thought to be due to the resin being mixed

with fibres. Whilst there is a layer of pure resin in the middle of the laminate,

it can be seen in Fig. 13 that this layer is not uniform in any sense. As such,

the fibres will contribute to the shear modulus of this region, and the viscosity.260

The stiffer the resin, be it due to rate or temperature, the more stress will be

transferred to the fibres.

5.4. Post yield hardening

Figure 11 displays the stress/strain trace for a test conducted at 70◦C with a

normal pressure of 75kPa. The initial response discussed earlier can be observed265

as the steep initial gradient, before the yield point leads into the region of post-

yield hardening. The phenomenon of this post yield stiffness or hardness can

also be observed in the stress/strain traces presented by Larberg et al. [10].

Confidence in the rig function has been obtained by conducting a test whereby

PTFE was wrapped around the plates rather than CFRP, resulting in a zero270

stiffness post yield response as expected of a frictional material, with a coefficient

of friction of 0.096 which falls within the expected range for this material. This

confirms that the post yield hardening is due to the material and not the test

setup. Figure 10 shows the hardening parameter H peaks at 70◦C before falling

rapidly as temperature increases. This hardening effect may be due to the275

slow rate at which the tests are conducted. This could result in the liquid

resin reforming the joint post yield, preventing transition to pure slip. At low

temperatures the resin is too viscous to allow the joint to reform, however as the

temperature increases the resin becomes sufficiently fluid to allow reforming of
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the joint. By 90◦C the resin has become so fluid that it has almost fully flowed280

into the fibre core. As such, little resin remains at the ply-ply interface and

we instead see an almost frictional response, with very little hardening. Fibre

pullout tests conducted by Dodwell et al. [3] employed a much higher rate R

of 1mm/min, and the stress/strain traces obtained showed little or no evidence

of post yield hardening, suggesting the increased rate was sufficient to prevent285

reforming of the interface, either through the effective stiffening of the resin due

to rate, or simply due to the speed of deformation. This appears to be confirmed

when applying Eq. (7) upon which it can be seen that the post yield modulus,

Gt decreases as rate increases.

5.5. Inter-ply slip versus laminate shear290

The discussion and results presented suggest that inter-slip behaviour is the

result of localised mechanisms at the ply interface. However, the shear strains

and strain rates presented are all calculated relative to ply thicknesses, rather

than the thickness of the interface. The principal reasoning behind this is that

the characterisation has been designed with laminate behaviour in mind (see295

Section 5.7). Laminate shear parallel to the layering can be modelled as a set

of two shear springs in series; a soft spring for the interface and a stiffer spring

for the fibrous ply. Shear modulus here is denoted as S, where S is equivalent

to K and Gt of Eqs. (1)and (7). From [16] we see that hfib. ' 16hint. and

Sfib. ' 1000Sint., thus300

h̄

S
=
hint.
Sint.

+
hfib.
Sfib.

' hint.
Sint.

(
1 +

16

1000

)
' hint
Sint

. (8)

where h̄ = hint. + hfib.. From this we see that the shear stiffness of a

laminate parallel to the layering is dominated by the weak interface whilst the

contribution to laminate shear from the fibrous region is negligible, as such

S = Sint.h̄/hint. The laminate shear stiffness S is therefore an approximation
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of the shear behaviour of the ply as a result of localised shear or slip at the305

interface between the constituent layers. Considering shear behaviour on a ply

level, the strain can be simply changed based on the h ratio from [16], changing

the strain axis on the results without affecting the behavioural pattern. For this

work laminate shear stiffnesses are considered since these are most relevant for

the laminate-scale consolidation and forming applications considered in Section310

5.7

5.6. Discussion of potential errors and model limitations

With the careful application of certain caveats as discussed in Section 2, it

was possible to achieve a very high level of repeatability during testing. There

are however some limitations with this test rig. As the experimental set-up was315

contrived to investigate a specific material function, i.e. inter-ply slip, certain

inconsistencies in mechanism exist when compared to a real application. A

particular limitation with the model is that it is one dimensional with shear

occuring on a single plane. In reality the shear is also through thickness, and

as discussed is influenced by the irregular geometry of the interface, making it320

two dimensional. As such accuracy suffers and certain behavioural aspects are

overlooked. The model also assumes an initial elastic behaviour, suggesting that

at small strains the deformation will reduce to zero when load is removed, which

does not seem feasible due to the viscous nature of the resin being dominant

at these strain levels [17]. Whilst this model is a good starting point it is clear325

that further investigation is needed into these areas.

5.7. Optimum forming parameters for process induced shear strains

By understanding the geometry of the part and forming process employed it

is possible to calculate the shear strain required for the part to conform to the

required geometry; minimising the likelihood of manufacturing defects (see for330
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example the out-of-plane wrinkles shown in Fig. 1). If we consider two different

forming approaches we can understand the difference in shear strain required

for defect free forming. First we consider a debulk scenario (Fig. 14) (Left),

such as might occur after deposition of plies around a radius.

The total slip at the free edge can be calculated as the difference between335

the outer arc length before and after debulk. The pre-debulk arclength spre =

(r+ 1
2 (Nh))θ, where r is tool radius, N is number of plies, θ is tool angle and h/2

is ply thickness. The post-debulk arc length spost = θ(r− 1
2 ((1−α)Nh)), where

α is the percentage consolidation. Therefore for the consolidation scenario, the

required shear strain is340

γcons. = ln

(
1 +

spre − spost
1
2 (Nh)

)
= ln ((1− α)θ) . (9)

Figure 14 (Right) relates to a drape forming scenario in which a laminte is

laid flat then formed to a geometric tool. For this example the inter-ply slip

is the difference in length between the arc length at the outer radius spost =

θ(r + 1
2 (Nh)) and the length of the laminate spre = θr. Thus

γform = ln

(
1 +

spost − spre
1
2 (Nh)

)
= ln (1 + θ) (10)

Shear strain generated is thus dependent on the angle of the corner radius θ,345

and for the consolidation case the level of consolidation. In both cases the shear

strain increases incrementally as we move away from the axis of symmetry,

reaching a maximum at the free edge. Thus if θ = π/2 and consolidation

α = 12% [7, 3], the corner consolidation example generates a maximum shear

strain of γcons. = 0.32, whilst the drape forming scenario requires a much greater350

shear strain of γform = 0.94.

By consulting the material specific stress/strain traces it is possible to deter-
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mine which combination of forming parameters will minimise the shear stress to

achieve that particular shear strain. In Fig. 14 (Left) the shear strain required

to consolidate the part is 0.32. At low strains the key variables are the initial355

stiffness, K, and the critical shear stress, τc.

The scenario displayed in Fig. 14 (Right) induces a much higher shear

strain of 0.94. In this instance we are looking to minimise both H and τc. High

temperature is still desirable and results appear to suggest the forming process

might be conducted at a high rate of deformation, contrary to both intuition,360

and results presented in [17]. It is important to note that this is assuming

inter-ply slip is the only factor affecting wrinkle formation. However, this data

is drawn from tests deliberatly designed to isolate the shear behaviour on flat

plates. Whilst reducing resistance to slip reduces the end load generated by

shear, it also causes the plies to act individually, rather than as a laminate,365

increasing vulnerabilty to wrinkling via end load generated from other sources.

5.8. Application to laminate modelling

The work presented works well when considering the movement of one ply

relative to another. However, the package this forms is not immediately suitable

for upscaling into a many-layered laminate, as it effectively consists of one resin370

interface layer between two full fibrous layers, as the resin at the ply to tool

interface is disregarded due to the manner in which the sample is clamped.

The optimum package for upscaling would consist of a single full resin inteface

between two fibrous layers of half thickness. However, if we were to use this value

of h to determine the experimental shear strains, we would need to account375

for the reduction in stiffness due to the omitted fibrous region by reducing

the measured deformation proportionately. This would require a much more

comprehensive understanding of the individual contributions of the fibrous and

resin layers to the overall stiffness. By adopting the two ply package used in this

16



paper we are able to propose a conservative estimate of the optimum forming380

parameters, as the test package is actually thicker than the repeatable package,

resulting in a lower prediction of shear strain for a given value of applied stress

than would actually occur.

6. Concluding remarks and future work

The focused test program has allowed a thorough investigation of the AS4/8552385

material, giving a clear insight into how the manipulation of temperature, pres-

sure and rate can influence the behaviour of uncured prepreg. A new model has

been presented that combines elastic and plastic behaviour in order to charac-

terise the through thickness shear response of uncured composite pre-preg. This

model avoids the overestimation of yield stress acquired from a purely frictional390

(plastic) model, and avoids the underestimation presented by a purely elastic

model. The combination of these two behaviours allows for increased accuracy

when considering shear strain levels encountered during the forming of produc-

tion parts. The model is a first step however as the yield point predicted and

subsequent change in gradient of the stress/strain trace is instant, whereas ex-395

perimental stress/strain traces show a more gradual transition. As a result, the

model slightly overestimates the yield stress, however it is a significant improve-

ment over the estimation from a purely frictional model.

The test methodology has proven itself capable of predicting the parameters

required for minimum resistance to ply mobility, with temperature having the400

largest impact. For AS4/8552 prepreg minimum resistance is at a temperature

of 90◦C, for other materials it is expected that a similar minimum resistance

point will also be primarily temperature dependent due to the nature of uncured

resin. Other parameters can be manipulated to further improve formability

depending on the manufacturing process used. Certain applications require the405
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use of pressure, such as the example discussed in Section 5.7, where the aim

is to achieve maximum consolidation through the use of pressure. As such,

the pressure effectively both drives and restricts the slip. It therefore becomes

necessary to balance the pressure required to consolidate the part against the

pressure required to allow plies to slip within the laminate. Using the results410

provided here it is possible to offset the negative influence of the high pressure

required by choosing an optimum temperature and rate.

Material parameters derived from this technique have already been used to

accurately predict wrinkle formation in a corner consolidation model derived

by Dodwell et al. [3, 4], with results comparing favourably with data gathered415

from industry.
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Figure 1: CT image of a typical wrinkle defect within a corner, arising due to the inability of
layers to slip over one another [3].

Figure 2: Plot of K against dγ/dt for a fixed temperature T = 70◦ at a fixed pressure σn =
75kPa

.
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Figure 3: Plot of critical yield stress τc against normal stress σn for a fixed temperature
T = 40◦C and strain rate dγ/dt = 3.33 × 10−3s−1.

Figure 4: (Left) Schematic of interply test rig in which the two individual parts move apart
at constant rate du/dt and the required force is recorded. (Right) Detail of the fibre-plate
clamping, with arrows denoting the direction of travel of the side plates. The dashed line
on the centre plate indicates where the ply is passed through a gap in the tool so that it is
effectively clamping itself.
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Figure 5: (Left) Shear stress τ against shear strain γ for varying temperature. The data was
generated at a fixed rate dγ/dt = 3.33e−3s−1 and pressure σn = 75kPa.(Right) Shear stress
τ against shear strain γ for varying pressure, σn. The data was generated at a fixed rate
dγ/dt = 3.33e−3s−1 and a temperature of 90◦C.

Figure 6: Shear stress τ against shear strain γ for varying strain rate, dγ/dt. The data was
generated at a fixed temperature of 70◦C and pressure σn = 75kPa.

Table 1: Experimental matrix for AS4/8552. Each × represents a set of at least 3 repeated
experiments
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Figure 7: (Left) Joint strength j against temperature. (Right) Coefficient of friction µ against
temperature. The data for both plots was generated at a fixed rate dγ/dt = 3.33e−3s−1.

Figure 8: Critical shear stress τc against temperature, for a strain rate dγ/dt=3.33e−3s−1.

Table 2: Experimentally derived regression coefficients for j and µ at a fixed rate dγ/dt =
3.33e−3s−1.
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Figure 9: (Left) Rate independent shear modulus G against temperature. (Right) Coefficient
of viscosity η against temperature. All tests conducted at a pressure σn = 75kPa.

Figure 10: (Left) Strain hardening parameter H against temperature. Test conducted at a
pressure σn=75kPa

Table 3: Experimentally derived vales and regression coefficients for G, η and H respectively.
Each regression coefficient was drawn from nine data points conducted at a pressure σn=75kPa
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Figure 11: The bi-linear stress-strain response for the viscoelasto-plastic model overlays a
typical experimental stress/strain trace for fixed temperature T = 75◦C, normal pressure
σn = 75kPa and strain rate dγ/dt = 3.33e-3s−1. The plot is characterised by two lines, which
describe the shear response pre and post-yield (τ > τc).

Figure 12: (Left) Cross-section of a single ply of uncured, unconsolidated AS4/8552 prepreg
(magnification x270). (Right) Cross-section of AS4/8552 prepreg post consolidation at a
temperature of 80◦C (magnification x270).
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Figure 13: Cross-section of two 0◦ plies of uncured, unconsolidated AS4/8552 prepreg (mag-
nification x270).

Figure 14: (Left) Consolidation of a composite laminate over one half of a symmetrical semi-
circular tool. (Right) Drape forming of a composite laminate over the same tool. δs is the total
slip. Due to symmetry the right hand edge of the laminate is effectively fixed horizontally.
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