1,947 research outputs found

    Non-Markovian dynamics of double quantum dot charge qubits due to acoustic phonons

    Full text link
    We investigate the dynamics of a double quantum dot charge qubit which is coupled to piezoelectric acoustic phonons, appropriate for GaAs heterostructures. At low temperatures, the phonon bath induces a non-Markovian dynamical behavior of the oscillations between the two charge states of the double quantum dot. Upon applying the numerically exact quasiadiabatic propagator path-integral scheme, the reduced density matrix of the charge qubit is calculated, thereby avoiding the Born-Markov approximation. This allows a systematic study of the dependence of the Q-factor on the lattice temperature, on the size of the quantum dots, as well as on the interdot coupling. We calculate the Q-factor for a recently realized experimental setup and find that it is two orders of magnitudes larger than the measured value, indicating that the decoherence due to phonons is a subordinate mechanism.Comment: 5 pages, 7 figures, replaced with the version to appear in Phys. Rev.

    Protocols for the assurance of microarray data quality and process control

    Get PDF
    Microarrays represent a powerful technology that provides the ability to simultaneously measure the expression of thousands of genes. However, it is a multi-step process with numerous potential sources of variation that can compromise data analysis and interpretation if left uncontrolled, necessitating the development of quality control protocols to ensure assay consistency and high-quality data. In response to emerging standards, such as the minimum information about a microarray experiment standard, tools are required to ascertain the quality and reproducibility of results within and across studies. To this end, an intralaboratory quality control protocol for two color, spotted microarrays was developed using cDNA microarrays from in vivo and in vitro dose-response and time-course studies. The protocol combines: (i) diagnostic plots monitoring the degree of feature saturation, global feature and background intensities, and feature misalignments with (ii) plots monitoring the intensity distributions within arrays with (iii) a support vector machine (SVM) model. The protocol is applicable to any laboratory with sufficient datasets to establish historical high- and low-quality data

    The Physical Basis for Long-lived Electronic Coherence in Photosynthetic Light Harvesting Systems

    Full text link
    The physical basis for observed long-lived electronic coherence in photosynthetic light-harvesting systems is identified using an analytically soluble model. Three physical features are found to be responsible for their long coherence lifetimes: i) the small energy gap between excitonic states, ii) the small ratio of the energy gap to the coupling between excitonic states, and iii) the fact that the molecular characteristics place the system in an effective low temperature regime, even at ambient conditions. Using this approach, we obtain decoherence times for a dimer model with FMO parameters of \approx 160 fs at 77 K and \approx 80 fs at 277 K. As such, significant oscillations are found to persist for 600 fs and 300 fs, respectively, in accord with the experiment and with previous computations. Similar good agreement is found for PC645 at room temperature, with oscillations persisting for 400 fs. The analytic expressions obtained provide direct insight into the parameter dependence of the decoherence time scales.Comment: 5 figures; J. Phys. Chem. Lett. (2011

    Restructuring of amygdala subregion apportion across adolescence

    Get PDF
    Total amygdala volumes develop in association with sex and puberty, and postmortem studies find neuronal numbers increase in a nuclei specific fashion across development. Thus, amygdala subregions and composition may evolve with age. Our goal was to examine if amygdala subregion absolute volumes and/or relative proportion varies as a function of age, sex, or puberty in a large sample of typically developing adolescents (N = 408, 43 % female, 10–17 years). Utilizing the in vivo CIT168 atlas, we quantified 9 subregions and implemented Generalized Additive Mixed Models to capture potential non-linear associations with age and pubertal status between sexes. Only males showed significant age associations with the basolateral ventral and paralaminar subdivision (BLVPL), central nucleus (CEN), and amygdala transition area (ATA). Again, only males showed relative differences in the proportion of the BLVPL, CEN, ATA, along with lateral (LA) and amygdalostriatal transition area (ASTA), with age. Using a best-fit modeling approach, age, and not puberty, was found to drive these associations. The results suggest that amygdala subregions show unique variations with age in males across adolescence. Future research is warranted to determine if our findings may contribute to sex differences in mental health that emerge across adolescence

    Tissue microarrays: one size does not fit all

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although tissue microarrays (TMAs) are commonly employed in clinical and basic-science research, there are no guidelines for evaluating the appropriateness of a TMA for a given biomarker and tumor type. Furthermore, TMA performance across multiple biomarkers has not been systematically explored.</p> <p>Methods</p> <p>A simulated TMA with between 1 and 10 cores was designed to study tumor expression of 6 biomarkers with varied expression patterns (B7-H1, B7-H3, survivin, Ki-67, CAIX, and IMP3) using 100 patients with clear cell renal cell carcinoma (RCC). We evaluated agreement between whole tissue section and TMA immunohistochemical biomarker quantification to assess how many TMA cores are necessary to adequately represent RCC whole tissue section expression. Additionally, we evaluated associations of whole tissue section and TMA expression with RCC-specific death.</p> <p>Results</p> <p>The number of simulated TMA cores necessary to adequately represent whole tissue section quantification is biomarker specific. Although 2-3 cores appeared adequate for B7-H3, Ki-67, CAIX, and IMP3, even as many as 10 cores resulted in poor agreement for B7-H1 and survivin compared to RCC whole tissue sections. While whole tissue section B7-H1 was significantly associated with RCC-specific death, no significant associations were detected using as many as 10 TMA cores, suggesting that TMAs can result in false-negative findings if the TMA is not optimally designed.</p> <p>Conclusions</p> <p>Prior to TMA analysis, the number of TMA cores necessary to accurately represent biomarker expression on whole tissue sections should be established as there is not a one-size-fits-all TMA. We illustrate the use of a simulated TMA as a cost-effective tool for this purpose.</p

    Nudging Cooperation in a Crowd Experiment

    Get PDF
    We examine the hypothesis that driven by a competition heuristic, people don't even reflect or consider whether a cooperation strategy may be better. As a paradigmatic example of this behavior we propose the zero-sum game fallacy, according to which people believe that resources are fixed even when they are not. We demonstrate that people only cooperate if the competitive heuristic is explicitly overridden in an experiment in which participants play two rounds of a game in which competition is suboptimal. The observed spontaneous behavior for most players was to compete. Then participants were explicitly reminded that the competing strategy may not be optimal. This minor intervention boosted cooperation, implying that competition does not result from lack of trust or willingness to cooperate but instead from the inability to inhibit the competition bias. This activity was performed in a controlled laboratory setting and also as a crowd experiment. Understanding the psychological underpinnings of these behaviors may help us improve cooperation and thus may have vast practical consequences to our society.Fil: Niella, Tamara. Universidad Torcuato di Tella; ArgentinaFil: Stier, Nicolas. Universidad Torcuato di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sigman, Mariano. Universidad Torcuato di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    The UN in the lab

    Get PDF
    We consider two alternatives to inaction for governments combating terrorism, which we term Defense and Prevention. Defense consists of investing in resources that reduce the impact of an attack, and generates a negative externality to other governments, making their countries a more attractive objective for terrorists. In contrast, Prevention, which consists of investing in resources that reduce the ability of the terrorist organization to mount an attack, creates a positive externality by reducing the overall threat of terrorism for all. This interaction is captured using a simple 3×3 “Nested Prisoner’s Dilemma” game, with a single Nash equilibrium where both countries choose Defense. Due to the structure of this interaction, countries can benefit from coordination of policy choices, and international institutions (such as the UN) can be utilized to facilitate coordination by implementing agreements to share the burden of Prevention. We introduce an institution that implements a burden-sharing policy for Prevention, and investigate experimentally whether subjects coordinate on a cooperative strategy more frequently under different levels of cost sharing. In all treatments, burden sharing leaves the Prisoner’s Dilemma structure and Nash equilibrium of the game unchanged. We compare three levels of burden sharing to a baseline in a between-subjects design, and find that burden sharing generates a non-linear effect on the choice of the efficient Prevention strategy and overall performance. Only an institution supporting a high level of mandatory burden sharing generates a significant improvement in the use of the Prevention strategy
    corecore