5,993 research outputs found

    Nonlinear Electrodynamics: Alternative Field Theory for Featuring Photon Propagation Over Weak Background Electromagnetic Fields and what Earth Receivers Read off Radio Signals from Interplanetary Spacecraft Transponders

    Get PDF
    A few observational and/or experimental results have dramatically pushed forward the research program on gravity as those from the radio-metric Doppler tracking received from the Pioneer 10 and 11 spacecrafts when the space vehicles were at heliocentric distances between 20 and 70 Astronomical Units (AU). These data have conclusively demonstrated the presence of an anomalous, tiny and blue-shifted frequency drift that changes smoothly at a rate of ∼6×10−9 \sim 6 \times 10^{-9} Hz s−1^{-1}. Those signals, if interpreted as a gravitational pull of the Sun on each Pioneer vehicle, translates into a deceleration of aP=(8.74±1.33)×10−10a_P = (8.74\pm 1.33) \times 10^{-10} m s−2^{-2}. This Sunward acceleration appears to be a violation of Newton's inverse-square law of gravitation, and is referred to as the Pioneer anomaly, the nature of which remains still elusive to unveil. Within the theoretical framework of nonlinear electrodynamics (NLED) in what follows we will address this astrodynamics puzzle, which over the last fifteen years has challenged in a fundamental basis our understanding of gravitational physics. To this goal we will first, and briefly, review the history of the Pioneers 10 and 11 missions. Then a synopsis of currently available Lagrangian formulations of NLED is given. And finally, we present our solution of this enigma by invoking a special class of NLED theories featuring a proper description of electromagnetic phenomena taking place in environments where the strength of the (electro)magnetic fields in the background is decidedly low.Comment: 24, pages, 3 figures. Source of the first publication of this article: InTech Publisher: http://www.intechweb.or

    Primordial magnetic fields and gravitational baryogenesis in nonlinear electrodynamics

    Full text link
    The amplification of the primordial magnetic fields and the gravitational baryogenesis, a mechanism that allows to generate the baryon asymmetry in the Universe by means of the coupling between the Ricci scalar curvature and the baryon current, are reviewed in the framework of the nonlinear electrodynamics. To study the amplification of the primordial magnetic field strength, we write down the gauge invariant wave equations and then solve them (in the long wavelength approximation) for three different eras of the Universe: de Sitter, the reheating and the radiation dominated era. Constraints on parameters entering the nonlinear electrodynamics are obtained by using the amplitude of the observed galactic magnetic fields and the baryon asymmetry, which are characterized by the dimensionless parameters r∼10−37r\sim 10^{-37} and ηB≲9×10−11\eta_B\lesssim 9\times 10^{-11}, respectively.Comment: 10 pages, 3 tables, 6 figures. Accepted for publication in Physical Review

    Fundamental measure theory for mixtures of parallel hard cubes. II. Phase behavior of the one-component fluid and of the binary mixture

    Get PDF
    A previously developed fundamental measure fucntional [J. Chem. Phys. vol.107, 6379 (1997)] is used to study the phase behavior of a system of parallel hard cubes. The single-component fluid exhibits a continuous transition to a solid with an anomalously large density of vacancies. The binary mixture has a demixing transition for edge-length ratios below 0.1. Freezing in this mixture reveals that at least the phase rich in large cubes lies in the region where the uniform fluid is unstable, hence suggesting a fluid-solid phase separation. A method is develop to study very asymmetric binary mixtures by taking the limit of zero size ratio (scaling the density and fugacity of the solvent as appropriate) in the semi-grand ensemble where the chemical potential of the solvent is fixed. With this procedure the mixture is exactly mapped onto a one-component fluid of parallel adhesive hard cubes. At any density and solvent fugacity the large cubes are shown to collapse into a close-packed solid. Nevertheless the phase diagram contains a large metastability region with fluid and solid phases. Upon introduction of a slight polydispersity in the large cubes the system shows the typical phase diagram of a fluid with an isostructural solid-solid transition (with the exception of a continuous freezing). Consequences about the phase behavior of binary mixtures of hard core particles are then drawn.Comment: 14 pages, 6 eps figures, uses revtex, amstex, epsfig, and multicol style file

    A spherically symmetric and stationary universe from a weak modification of general relativity

    Full text link
    It is shown that a weak modification of general relativity, in the linearized approach, renders a spherically symmetric and stationary model of the universe. This is due to the presence of a third mode of polarization in the linearized gravity in which a "curvature" energy term is present. Such an energy can, in principle, be identified as the Dark Energy. The model can also help to a better understanding of the framework of the Einstein-Vlasov system.Comment: Accepted for publication by Europhysics Letter

    Nonlinear electrodynamics and the gravitational redshift of highly magnetised neutron stars

    Full text link
    The idea that the nonlinear electromagnetic interaction, i. e., light propagation in vacuum, can be geometrized was developed by Novello et al. (2000) and Novello & Salim (2001). Since then a number of physical consequences for the dynamics of a variety of systems have been explored. In a recent paper Mosquera Cuesta & Salim (2003) presented the first astrophysical study where such nonlinear electrodynamics (NLEDs) effects were accounted for in the case of a highly magnetized neutron star or pulsar. In that paper the NLEDs was invoked {\it a l\`a} Euler-Heisenberg, which is an infinite series expansion of which only the first term was used for the analisys. The immediate consequence of that study was an overall modification of the space-time geometry around the pulsar, which is ``perceived'', in principle, only by light propagating out of the star. This translates into an significant change in the surface redshift, as inferred from absorption (emission) lines observed from a super magnetized pulsar. The result proves to be even more dramatic for the so-called magnetars, pulsars endowed with magnetic (BB) fields higher then the Schafroth quantum electrodynamics critical BB-field. Here we demonstrate that the same effect still appears if one calls for the NLEDs in the form of the one rigorously derived by Born & Infeld (1934) based on the special relativistic limit for the velocity of approaching of an elementary particle to a pointlike electron [From the mathematical point of view, the Born & Infeld (1934) NLEDs is described by an exact Lagrangean, whose dynamics has been successfully studied in a wide set of physical systems.].Comment: Accepted for publication in Month. Not. Roy. Ast. Soc. latex file, mn-1.4.sty, 5 pages, 2 figure
    • …
    corecore