537 research outputs found

    Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration

    Get PDF
    Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed

    Smart Home Systems

    Get PDF

    Fresh water generation from aquifer-pressured carbon storage: Feasibility of treating saline formation waters

    Get PDF
    AbstractBrines up to 85,000 ppm total dissolved solids produced during Carbon Capture and Storage (CCS) operations in saline formations may be used as the feedstock for desalination and water treatment technologies via reverse osmosis (RO). The aquifer pressure resulting from the injection of carbon dioxide can provide all or part of the inlet pressure for the desalination system. Residual brine from such a process could be reinjected into the formation at net volume reduction, such that the volume of fresh water extracted is comparable to the volume of CO2 injected into the formation. Such a process could provide additional CO2 storage capacity in the aquifer, reduce operational risks (e.g., fracturing, seismicity, leaking) by relieving overpressure in the formation, and provide a source of low-cost fresh water to offset costs or operational water needs equal to about half the water usage of a typical coal ICGG power plant. We call the combined processes of brine removal, treatment, and pressure management active reservoir management. We have examined a range of saline formation water compositions propose a general categorization for the feasibility of the process based total dissolved solids (TDS): •10,000–40,000 mg/L TDS: Standard RO with ≥50% recovery•40,000–85,000 mg/L TDS: Standard RO with ≥10% recovery; higher recovery possible using 1500 psi RO membranes and/or multi-stage incremental desalination likely including NF (nanofiltration)•85,000–300,000 mg/L TDS: Multi-stage process using process design that may differ significantly from seawater systems•>300,000 mg/L TDS brines: Not likely to be treatable Brines in the 10,000–85,000 mg/L TDS range appear to be abundant (geographically and with depth) and could be targeted in planning CCS operations. Costs for desalination of fluids from saline aquifers are in the range of 400–1000/acrefootofpermeatewhenstorageaquiferpressuresexceed1200 psi.Thisisabouthalfofconventionalseawaterdesalinationcostsof400–1000/acre foot of permeate when storage aquifer pressures exceed 1200 psi. This is about half of conventional seawater desalination costs of 1000–1400/acre foot. Costs increase by 30 to 50% when pressure must be added at the surface. The primary reason for the cost reduction in pressurized aquifers relative to seawater is the lack of need for energy to drive the high-pressure pumps. An additional cost savings has to do with less pre-treatment than is customary for ocean waters full of biological activity and their degradation products. An innovative parallel low-recovery approach is proposed that would be particularly effective for saline formation waters in the 40,000–85,000 mg/L TDS range

    Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing knowledge about cellular interactions in the immune system, including the central role of cytokine networks, has lead to new treatments using monoclonal antibodies that block specific components of the immune system. Systemic cytokine concentrations can serve as surrogate outcome parameters of these interventions to study inflammatory pathways operative in patients <it>in vivo</it>. This is now possible due to novel technologies such as multiplex immunoassays (MIA) that allows detection of multiple cytokines in a single sample. However, apparently trivial underappreciated processes, (sample handling and storage, interference of endogenous plasma proteins) can greatly impact the reliability and reproducibility of cytokine detection.</p> <p>Therefore we set out to investigate several processes that might impact cytokine profiles such as blood collecting tubes, duration of storage, and number of freeze thawing cycles.</p> <p>Results</p> <p>Since under physiological conditions cytokine concentrations normally are low or undetectable we spiked cytokines in the various plasma and serum samples. Overall recoveries ranged between 80-120%. Long time storage showed cytokines are stable for a period up to 2 years of storage at -80°C. After 4 years several cytokines (IL-1α, IL-1β, IL-10, IL-15 and CXCL8) degraded up to 75% or less of baseline values. Furthermore we show that only 2 out of 15 cytokines remained stable after several freeze-thawing cycles. We also demonstrate implementation of an internal control for multiplex cytokine immunoassays.</p> <p>Conclusion</p> <p>All together we show parameters which are essential for measurement of cytokines in the context of clinical trials.</p

    Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    Get PDF
    • …
    corecore