283 research outputs found

    Out of Equilibrium Dynamics of Supersymmetry at High Energy Density

    Get PDF
    We investigate the out of equilibrium dynamics of global chiral supersymmetry at finite energy density. We concentrate on two specific models. The first is the massive Wess-Zumino model which we study in a selfconsistent one-loop approximation. We find that for energy densities above a certain threshold, the fields are driven dynamically to a point in field space at which the fermionic component of the superfield is massless. The state, however is found to be unstable, indicating a breakdown of the one-loop approximation. To investigate further, we consider an O(N) massive chiral model which is solved exactly in the large NN limit. For sufficiently high energy densities, we find that for late times the fields reach a nonperturbative minimum of the effective potential degenerate with the perturbative minimum. This minimum is a true attractor for O(N) invariant states at high energy densities, and this provides a mechanism for determining which of the otherwise degenerate vacua is chosen by the dynamics. The final state for large energy density is a cloud of massless particles (both bosons and fermions) around this new nonperturbative supersymmetric minimum. By introducing boson masses which softly break the supersymmetry, we demonstrate a see-saw mechanism for generating small fermion masses. We discuss some of the cosmological implications of our results.Comment: 31 pages, 15 figure

    Quantum fluctuations of the electroweak sphaleron: Erratum and Addendum

    Full text link
    We correct an error in our treatment of the tadpole contribution to the fluctuation determinant of the sphaleron, and also a minor mistake in a previous estimate. Thereby the overall agreement between the two existing exact computations and their consistency with the estimate is improved considerably.Comment: 4 pages, Dortmund preprint DO-TH-93/19E

    Gauge Fields Out-Of-Equilibrium: A Gauge Invariant Formulation and the Coulomb Gauge

    Full text link
    We study the abelian Higgs model out-of-equilibrium in two different approaches, a gauge invariant formulation, proposed by Boyanovsky et al. \cite{Boyanovsky:1996dc} and in the Coulomb gauge. We show that both approaches become equivalent in a consistent one loop approximation. Furthermore, we carry out a proper renormalization for the model in order to prepare the equations for a numerical implementation. The additional degrees of freedom, which arise in gauge theories, influence the behavior of the system dramatically. A comparison with results in the 't Hooft-Feynman background gauge found by us recently, shows very good agreement.Comment: 32 pages, 8 figure

    Nonequilibrium dynamics: a renormalized computation scheme

    Full text link
    We present a regularized and renormalized version of the one-loop nonlinear relaxation equations that determine the non-equilibrium time evolution of a classical (constant) field coupled to its quantum fluctuations. We obtain a computational method in which the evaluation of divergent fluctuation integrals and the evaluation of the exact finite parts are cleanly separated so as to allow for a wide freedom in the choice of regularization and renormalization schemes. We use dimensional regularization here. Within the same formalism we analyze also the regularization and renormalization of the energy-momentum tensor. The energy density serves to monitor the reliability of our numerical computation. The method is applied to the simple case of a scalar phi^4 theory; the results are similar to the ones found previously by other groups.Comment: 15 pages, 9 postscript figures, revtex; version published in Phys. Rev, with minor corrections; improves the first version of 1996 by including the discussion of energy momentum tenso

    Fluctuation corrections to bubble nucleation

    Get PDF
    The fluctuation determinant which determines the preexponential factor of the transition rate for minimal bubbles is computed for the electroweak theory with sinΘW=0\sin \Theta_W = 0. As the basic action we use the three-dimensional high-temperature action including, besides temperature dependent masses, the TΦ3T \Phi^3 one-loop contribution which makes the phase transition first order. The results show that this contribution (which has then to be subtracted from the exact result) gives the dominant contribution to the one-loop effective action. The remaining correction is of the order of, but in general larger than the critical bubble action and suppresses the transition rate. The results for the Higgs field fluctuations are compared with those of an approximate heat kernel computation of Kripfganz et al., good agreement is found for small bubbles, strong deviations for large thin-wall bubbles.Comment: 19 pages, LaTeX, no macros, no figure
    corecore