4,645 research outputs found
A GPU-based multi-criteria optimization algorithm for HDR brachytherapy
Currently in HDR brachytherapy planning, a manual fine-tuning of an objective
function is necessary to obtain case-specific valid plans. This study intends
to facilitate this process by proposing a patient-specific inverse planning
algorithm for HDR prostate brachytherapy: GPU-based multi-criteria optimization
(gMCO).
Two GPU-based optimization engines including simulated annealing (gSA) and a
quasi-Newton optimizer (gL-BFGS) were implemented to compute multiple plans in
parallel. After evaluating the equivalence and the computation performance of
these two optimization engines, one preferred optimization engine was selected
for the gMCO algorithm. Five hundred sixty-two previously treated prostate HDR
cases were divided into validation set (100) and test set (462). In the
validation set, the number of Pareto optimal plans to achieve the best plan
quality was determined for the gMCO algorithm. In the test set, gMCO plans were
compared with the physician-approved clinical plans.
Over 462 cases, the number of clinically valid plans was 428 (92.6%) for
clinical plans and 461 (99.8%) for gMCO plans. The number of valid plans with
target V100 coverage greater than 95% was 288 (62.3%) for clinical plans and
414 (89.6%) for gMCO plans. The mean planning time was 9.4 s for the gMCO
algorithm to generate 1000 Pareto optimal plans.
In conclusion, gL-BFGS is able to compute thousands of SA equivalent
treatment plans within a short time frame. Powered by gL-BFGS, an ultra-fast
and robust multi-criteria optimization algorithm was implemented for HDR
prostate brachytherapy. A large-scale comparison against physician approved
clinical plans showed that treatment plan quality could be improved and
planning time could be significantly reduced with the proposed gMCO algorithm.Comment: 18 pages, 7 figure
Can a workspace help to overcome the query formulation problem in image retrieval?
We have proposed a novel image retrieval system that incorporates a workspace where users can organise their search results. A task-oriented and user-centred experiment has been devised involving design professionals and several types of realistic search tasks. We study the workspace’s effect on two aspects: task conceptualisation and query formulation. A traditional relevance feedback system serves as baseline. The results of this study show that the workspace is more useful with respect to both of the above aspects. The proposed approach leads to a more effective and enjoyable search experience
An oxygen isotope record of lacustrine opal from a European Maar indicates climatic stability during the Last Interglacial
The penultimate temperate period, 127–110 ka before present (BP), bracketed by abrupt shifts of the global climate system initiating and terminating it, is considered as an analogue of the Holocene because of a similar low global ice‐volume. Ice core records as well as continental and marine records exhibit conflicting evidence concerning the climate variability within this period, the Last Interglacial. We present, for the first time, a high‐resolution record of oxygen isotopes in diatom opal of the Last Interglacial obtained from the Ribains Maar in France (44°50′09″N 3°49′16″E). Our results indicate that the Last Interglacial in southwestern Europe was generally a period of climatic stability. The record shows that the temperate period was initiated by an abrupt warm event followed midway by a minor climatic transition to a colder climate. An abrupt isotopic depletion that occurs simultaneously with abrupt changes in pollen and diatom assemblages marks the end of the temperate period, and is correlative with the Melisey I stadial. Variations in the isotopic composition of lake‐water related to the isotopic composition of precipitation and evaporation dominate the biogenic opal oxygen isotope record
The use of implicit evidence for relevance feedback in web retrieval
In this paper we report on the application of two contrasting types of relevance feedback for web retrieval. We compare two systems; one using explicit relevance feedback (where searchers explicitly have to mark documents relevant) and one using implicit relevance feedback (where the system endeavours to estimate relevance by mining the searcher's interaction). The feedback is used to update the display according to the user's interaction. Our research focuses on the degree to which implicit evidence of document relevance can be substituted for explicit evidence. We examine the two variations in terms of both user opinion and search effectiveness
Spinodal decomposition of expanding nuclear matter and multifragmentation
Density fluctuations of expanding nuclear matter are studied within a
mean-field model in which fluctuations are generated by an external stochastic
field. Fluctuations develop about a mean one-body phase-space density
corresponding to a hydrodinamic motion that describes a slow expansion of the
system. A fluctuation-dissipation relation suitable for a uniformly expanding
medium is obtained and used to constrain the strength of the stochastic field.
The distribution of the liquid domains in the spinodal decomposition is
derived. Comparison of the related distribution of the fragment size with
experimental data on the nuclear multifragmentation is quite satisfactory.Comment: 19 RevTex4 pages, 6 eps figures, to appear in Phys. Rev.
- …