20 research outputs found

    Erratum: Structure of the 70S ribosome from human pathogen Staphylococcus aureus (Nucleic Acids Research (2017) DOI: 10.1093/nar/gkw933)

    Get PDF
    © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.The authors wish to correct their Funding statement as follows: FUNDING. 'Centre National de la Recherche Scientifique' (CNRS) and the 'Agence Nationale de la Recherche' as part of the 'Investissements d'Avenir' program [LabEx: ANR-10-LABX-0036-NETRNA to P.R., Y.H.; ANR-15-CE11-0021-01 to G.Y.]; 'Fondation pour la Recherche Médicale en France' [FDT20140930867 to I.K; 'European Research Council advanced grant' [294312 to M.Y.]; the 'Russian Science Foundation' [Project No. 16-14-10014 to I.K., M.Y.]. Funding for open access charge: Centre National de la Recherche Scientifique (CNRS). In addition, Marat Yusupov is associated with both affiliations1 and 2. The authors apologise to the readers for this error

    Unfixed cryosections of striated muscle to study dynamic molecular events.

    Get PDF
    The structures of the actin and myosin filaments of striated muscle have been studied extensively in the past by sectioning of fixed specimens. However, chemical fixation alters molecular details and prevents biochemically induced structural changes. To overcome these problems, we investigate here the potential of cryosectioning unfixed muscle. In cryosections of relaxed, unfixed specimens, individual myosin filaments displayed the characteristic helical organization of detached cross-bridges, but the filament lattice had disintegrated. To preserve both the filament lattice and the molecular structure of the filaments, we decided to section unfixed rigor muscle, stabilized by actomyosin cross-bridges. The best sections showed periodic, angled cross-bridges attached to actin and their Fourier transforms displayed layer lines similar to those in x-ray diffraction patterns of rigor muscle. To preserve relaxed filaments in their original lattice, unfixed sections of rigor muscle were picked up on a grid and relaxed before negative staining. The myosin and actin filaments showed the characteristic helical arrangements of detached cross-bridges and actin subunits, and Fourier transforms were similar to x-ray patterns of relaxed muscle. We conclude that the rigor structure of muscle and the ability of the filament lattice to undergo the rigor-relaxed transformation can be preserved in unfixed cryosections. In the future, it should be possible to carry out dynamic studies of active sacromeres by cryo-electron microscopy

    Erratum: Structure of the 70S ribosome from human pathogen Staphylococcus aureus (Nucleic Acids Research (2017) DOI: 10.1093/nar/gkw933)

    No full text
    © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.The authors wish to correct their Funding statement as follows: FUNDING. 'Centre National de la Recherche Scientifique' (CNRS) and the 'Agence Nationale de la Recherche' as part of the 'Investissements d'Avenir' program [LabEx: ANR-10-LABX-0036-NETRNA to P.R., Y.H.; ANR-15-CE11-0021-01 to G.Y.]; 'Fondation pour la Recherche Médicale en France' [FDT20140930867 to I.K; 'European Research Council advanced grant' [294312 to M.Y.]; the 'Russian Science Foundation' [Project No. 16-14-10014 to I.K., M.Y.]. Funding for open access charge: Centre National de la Recherche Scientifique (CNRS). In addition, Marat Yusupov is associated with both affiliations1 and 2. The authors apologise to the readers for this error

    Erratum: Structure of the 70S ribosome from human pathogen Staphylococcus aureus (Nucleic Acids Research (2017) DOI: 10.1093/nar/gkw933)

    Get PDF
    © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.The authors wish to correct their Funding statement as follows: FUNDING. 'Centre National de la Recherche Scientifique' (CNRS) and the 'Agence Nationale de la Recherche' as part of the 'Investissements d'Avenir' program [LabEx: ANR-10-LABX-0036-NETRNA to P.R., Y.H.; ANR-15-CE11-0021-01 to G.Y.]; 'Fondation pour la Recherche Médicale en France' [FDT20140930867 to I.K; 'European Research Council advanced grant' [294312 to M.Y.]; the 'Russian Science Foundation' [Project No. 16-14-10014 to I.K., M.Y.]. Funding for open access charge: Centre National de la Recherche Scientifique (CNRS). In addition, Marat Yusupov is associated with both affiliations1 and 2. The authors apologise to the readers for this error

    Erratum: Structure of the 70S ribosome from human pathogen Staphylococcus aureus (Nucleic Acids Research (2017) DOI: 10.1093/nar/gkw933)

    No full text
    © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.The authors wish to correct their Funding statement as follows: FUNDING. 'Centre National de la Recherche Scientifique' (CNRS) and the 'Agence Nationale de la Recherche' as part of the 'Investissements d'Avenir' program [LabEx: ANR-10-LABX-0036-NETRNA to P.R., Y.H.; ANR-15-CE11-0021-01 to G.Y.]; 'Fondation pour la Recherche Médicale en France' [FDT20140930867 to I.K; 'European Research Council advanced grant' [294312 to M.Y.]; the 'Russian Science Foundation' [Project No. 16-14-10014 to I.K., M.Y.]. Funding for open access charge: Centre National de la Recherche Scientifique (CNRS). In addition, Marat Yusupov is associated with both affiliations1 and 2. The authors apologise to the readers for this error

    Three-dimensional structure of the bacterial protein-translocation complex SecYEG

    No full text
    Transport and membrane integration of polypeptides is carried out by specific protein complexes in the membranes of all living cells. The Sec transport path provides an essential and ubiquitous route for protein translocation. In the bacterial cytoplasmic membrane, the channel is formed by oligomers of a heterotrimeric membrane protein complex consisting of subunits SecY, SecE and SecG. In the endoplasmic reticulum membrane, the channel is formed from the related Sec61 complex. Here we report the structure of the Escherichia coli SecYEG assembly at an in-plane resolution of 8 A. The three-dimensional map, calculated from two-dimensional SecYEG crystals, reveals a sandwich of two membranes interacting through the extensive cytoplasmic domains. Each membrane is composed of dimers of SecYEG. The monomeric complex contains 15 transmembrane helices. In the centre of the dimer we observe a 16 x 25 A cavity closed on the periplasmic side by two highly tilted transmembrane helices. This may represent the closed state of the protein-conducting channel
    corecore