551 research outputs found

    Mechanics of the turbulent/non-turbulent interface of a jet

    Get PDF
    We report the results of an experimental investigation of the mechanics and transport processes at the bounding interface between the turbulent and nonturbulent regions of flow in a turbulent jet, which shows the existence of a finite jump in the tangential velocity at the interface. This is associated with small-scale eddying motion at the outward propagating interface (nibbling) by which irrotational fluid becomes turbulent, and this implies that large-scale engulfment is not the dominant entrainment process. Interpretation of the jump as a singular structure yields an essential and significant contribution to the mean shear in the jet mixing region. Finally, our observations provide a justification for Prandtl’s original hypothesis of a constant eddy viscosity in the nonturbulent outer jet region

    A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel

    Get PDF
    The viscosity-temperature relation is determined for the water models SPC/E, TIP4P, TIP4P/Ew, and TIP4P/2005 by considering Poiseuille flow inside a nano-channel using molecular dynamics. The viscosity is determined by fitting the resulting velocity profile (away from the walls) to the continuum solution for a Newtonian fluid and then compared to experimental values. The results show that the TIP4P/2005 model gives the best prediction of the viscosity for the complete range of temperatures for liquid water, and thus it is the preferred water model of these considered here for simulations where the magnitude of viscosity is crucial. On the other hand, with the TIP4P model, the viscosity is severely underpredicted, and overall the model performed worst, whereas the SPC/E and TIP4P/Ew models perform moderately

    Two-point similarity in the round jet, Journal of Fluid Mechanics

    Get PDF

    Calibration of multiple cameras for large-scale experiments using a freely moving calibration target

    Get PDF
    Abstract: Obtaining accurate experimental data from Lagrangian tracking and tomographic velocimetry requires an accurate camera calibration consistent over multiple views. Established calibration procedures are often challenging to implement when the length scale of the measurement volume exceeds that of a typical laboratory experiment. Here, we combine tools developed in computer vision and non-linear camera mappings used in experimental fluid mechanics, to successfully calibrate a four-camera setup that is imaging inside a large tank of dimensions ∼10×25×6m3. The calibration procedure uses a planar checkerboard that is arbitrarily positioned at unknown locations and orientations. The method can be applied to any number of cameras. The parameters of the calibration yields direct estimates of the positions and orientations of the four cameras as well as the focal lengths of the lenses. These parameters are used to assess the quality of the calibration. The calibration allows us to perform accurate and consistent linear ray-tracing, which we use to triangulate and track fish inside the large tank. An open-source implementation of the calibration in Matlab is available. Graphic abstract: [Figure not available: see fulltext.]

    Turbulent thermal diffusion in a multi-fan turbulence generator with the imposed mean temperature gradient

    Full text link
    We studied experimentally the effect of turbulent thermal diffusion in a multi-fan turbulence generator which produces a nearly homogeneous and isotropic flow with a small mean velocity. Using Particle Image Velocimetry and Image Processing techniques we showed that in a turbulent flow with an imposed mean vertical temperature gradient (stably stratified flow) particles accumulate in the regions with the mean temperature minimum. These experiments detected the effect of turbulent thermal diffusion in a multi-fan turbulence generator for relatively high Reynolds numbers. The experimental results are in compliance with the results of the previous experimental studies of turbulent thermal diffusion in oscillating grids turbulence (Buchholz et al. 2004; Eidelman et al. 2004). We demonstrated that turbulent thermal diffusion is an universal phenomenon. It occurs independently of the method of turbulence generation, and the qualitative behavior of particle spatial distribution in these very different turbulent flows is similar. Competition between turbulent fluxes caused by turbulent thermal diffusion and turbulent diffusion determines the formation of particle inhomogeneities.Comment: 9 pages, 9 figure, REVTEX4, Experiments in Fluids, in pres

    Negatively buoyant starting jets

    Get PDF
    The initial development of negatively buoyant jets has been investigated experimentally and numerically, focusing on the role played by gravity in the evolution of the leading vortex ring. Under the experimental conditions considered in this work, the densimetric Froude number, Fr= ρjU²j/[(ρ₀ − ρj) gD] , which represents the ratio between the jet momentum and the buoyancy forces, emerges as the most relevant parameter characterizing the dynamics of the flow. Two different flow regimes have been observed depending on the Froude number: for sufficiently small Fr, the vortex ring generated initially is pushed radially away by gravity forces before it has time to detach from the shear layer originating at the orifice. On the other hand, when the Froude number is larger than a critical value, Fr> Frc∼ 1, the vortex ring detaches from the injection orifice and propagates downstream into the stagnant ambient followed by a trailing jet until it eventually reaches a maximum penetration depth. In order to clarify the mechanisms leading to the transition between the two regimes, and to gain physical understanding of the formation dynamics of negatively buoyant starting jets, the total and the vortex circulation, as well as the trajectory of the vortex center, have been measured and compared to the case of neutrally buoyant jets. Finally, based on the experimental measurements and on the results of the numerical computations, a kinematic model that successfully describes the evolution of both total circulation and vortex trajectory is proposed.This work was supported by the Spanish Ministry of Education under Project Nos. DPI2008-06624-C03-02 and ENE2008-0615-C04. This work has been extracted from the Ph.D. thesis of Marugán-CruzPublicad
    corecore