1,978 research outputs found

    Exploring the Design of mHealth Systems for Health Behavior Change using Mobile Biosensors

    Get PDF
    A person’s health behavior plays a vital role in mitigating their risk of disease and promoting positive health outcomes. In recent years, mHealth systems have emerged to offer novel approaches for encouraging and supporting users in changing their health behavior. Mobile biosensors represent a promising technology in this regard; that is, sensors that collect physiological data (e.g., heart rate, respiration, skin conductance) that individuals wear, carry, or access during their normal daily activities. mHealth system designers have started to use the health information from physiological data to deliver behavior-change interventions. However, little research provides guidance about how one can design mHealth systems to use mobile biosensors for health behavior change. In order to address this research gap, we conducted an exploratory study. Following a hybrid approach that combines deductive and inductive reasoning, we integrated a body of fragmented literature and conducted 30 semi-structured interviews with mHealth stakeholders. From this study, we developed a theoretical framework and six general design guidelines that shed light on the theoretical pathways for how the mHealth interface can facilitate behavior change and provide practical design considerations

    Effects of study design and allocation on participant behaviour-ESDA: study protocol for a randomized controlled trial

    Get PDF
    Background: What study participants think about the nature of a study has been hypothesised to affect subsequent behaviour and to potentially bias study findings. In this trial we examine the impact of awareness of study design and allocation on participant drinking behaviour. Methods/Design: A three-arm parallel group randomised controlled trial design will be used. All recruitment, screening, randomisation, and follow-up will be conducted on-line among university students. Participants who indicate a hazardous level of alcohol consumption will be randomly assigned to one of three groups. Group A will be informed their drinking will be assessed at baseline and again in one month (as in a cohort study design). Group B will be told the study is an intervention trial and they are in the control group. Group C will be told the study is an intervention trial and they are in the intervention group. All will receive exactly the same brief educational material to read. After one month, alcohol intake for the past 4 weeks will be assessed. Discussion: The experimental manipulations address subtle and previously unexplored ways in which participant behaviour may be unwittingly influenced by standard practice in trials. Given the necessity of relying on self-reported outcome, it will not be possible to distinguish true behaviour change from reporting artefact. This does not matter in the present study, as any effects of awareness of study design or allocation involve bias that is not well understood. There has been little research on awareness effects, and our outcomes will provide an indication of the possible value of further studies of this type and inform hypothesis generation

    Door-to-needle time for thrombolysis : a secondary analysis of the TIPS cluster randomised controlled trial

    Get PDF
    Objective: The current study aimed to evaluate the effects of a multi-component in-hospital intervention on the door-to-needle time for intravenous thrombolysis in acute ischaemic stroke. Design: This study was a post hoc analysis of door-to-needle time data from a cluster-randomised controlled trial testing an intervention to boost intravenous thrombolysis implementation. Setting: The study was conducted among 20 hospitals from three Australian states. Participant: Eligible hospitals had a Stroke Care Unit or staffing equivalent to a stroke physician and a nurse, and were in the early stages of implementing thrombolysis. Intervention: The intervention was multifaceted and developed using the behaviour change wheel and informed by breakthrough collaborative methodology using components of the health behaviour change wheel. Primary and secondary outcome measures: The primary outcome for this analysis was door-to-needle time for thrombolysis and secondary outcome was the proportion of patients received thrombolysis within 60 min of hospital arrival. Results: The intervention versus control difference in the door-to-needle times was non-significant overall nor significant by hospital classification. To provide additional context for the findings, we also evaluated the results within intervention and control hospitals. During the active-intervention period, the intervention hospitals showed a significant decrease in the door-to-needle time of 9.25 min (95% CI: -16.93 to 1.57), but during the post-intervention period, the result was not significant. During the active intervention period, control hospitals also showed a significant decrease in the door-to-needle time of 5.26 min (95% CI: -8.37 to -2.14) and during the post-intervention period, this trend continued with a decrease of 12.13 min (95% CI: -17.44 to 6.81). Conclusion: Across these primary stroke care centres in Australia, a secular trend towards shorter door-to-needle times across both intervention and control hospitals was evident, however the TIPS (Thrombolysis ImPlementation in Stroke) intervention showed no overall effect on door-to-needle times in the randomised comparison

    Interns are from Venus, consultants are from Mars: differential perception among clinicians

    Full text link
    OBJECTIVE: To test for the presence of sex-based differences in perception (the notion that men and women "think" differently, and that differences in perception are biologically based) among healthcare professionals. DESIGN: Prospective survey. SETTING AND PARTICIPANTS: 90 medical personnel at a tertiary care hospital in Newcastle, NSW. INTERVENTION: Healthcare professionals were shown two pictures that could be interpreted as depicting either a young or an old person, and a word that could be seen as geometric shapes. MAIN OUTCOME MEASURES: The effects of sex, age, seniority, and specialisation in relation to the first impression of the image, the ability to change one\u27s perception, and the speed of perception. RESULTS: Contrary to popular opinion, male physicians were more likely to perceive the older figures, and just as likely as women to be able to change their perception. Surgeons and junior staff were more likely to see, as well as being faster to form, an impression requiring abstract thought, and were more able to change their perceptions. CONCLUSIONS: Traditional sex stereotypes do not apply to medical personnel, but other age-based stereotypes, and professional rivalries (medical versus surgical) may have some empiric basis

    Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time

    Get PDF
    Background Laser-Doppler imaging (LDI) of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique. Methods We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool. Results Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA), site and cause of burn, day of LDI scan, burn center). It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small. Conclusion Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are that age and %TBSA are not important predictors of healing time when the LDI results are known, whereas gender does influence recovery time, even when blood flow is controlled for. The conclusion regarding the palette is that an optimum three-color palette can be chosen 'automatically', but the optimum choice of a 5-color palette cannot be made solely by optimizing the percentage of correct diagnoses

    Can a multicomponent multidisciplinary implementation package change physicians' and nurses' perceptions and practices regarding thrombolysis for acute ischemic stroke? : an exploratory analysis of a cluster-randomized trial

    Get PDF
    Background: The Thrombolysis ImPlementation in Stroke (TIPS) trial tested the effect of a multicomponent, multidisciplinary, collaborative intervention designed to increase the rates of intravenous thrombolysis via a cluster randomized controlled trial at 20 Australian hospitals (ten intervention, ten control). This sub-study investigated changes in self-reported perceptions and practices of physicians and nurses working in acute stroke care at the participating hospitals. Methods: A survey with 74 statements was administered during the pre-and post-intervention periods to staff at 19 of the 20 hospitals. An exploratory factor analysis identified the structure of the survey items and linear mixed modeling was applied to the final survey domain scores to explore the differences between groups over time. Result: The response rate was 45% for both the pre-(503 out of 1127 eligible staff from 19 hospitals) and post-intervention (414 out of 919 eligible staff from 18 hospitals) period. Four survey domains were identified: (1) hospital performance indicators, feedback, and training; (2) personal perceptions about thrombolysis evidence and implementation; (3) personal stroke skills and hospital stroke care policies; and (4) emergency and ambulance procedures. There was a significant pre-to post-intervention mean increase (0.21 95% CI 0.09; 0.34; p < 0.01) in scores relating to hospital performance indicators, feedback, and training; for the intervention hospitals compared to control hospitals. There was a corresponding increase in mean scores regarding perceptions about the thrombolysis evidence and implementation (0.21, 95% CI 0.06; 0.36; p < 0.05). Sub-group analysis indicated that the improvements were restricted to nurses' responses. Conclusion: TIPS resulted in changes in some aspects of nurses' perceptions relating to the evidence for intravenous thrombolysis and its implementation and hospital performance indicators, feedback, and training. However, there is a need to explore further strategies for influencing the views of physicians given limited statistical power in the physician sample
    • …
    corecore