891 research outputs found

    Superplastic forming of ceramic insulation

    Get PDF
    Superplasticity has been demonstrated in many fine-grained structural ceramics and ceramic composites, including yttria-stabilized tetragonal zirconia polycrystal (YTZP), alumina, and Al2O3-reinforced zirconia (Al2O3/YTZ) duplex composites and SiC-reinforced Si3N4. These superplastic ceramics obviously offer the potential benefit of forming net shape or near net shape parts. This could be particularly useful for forming complicated shapes that are difficult to achieve using conventional forming techniques, or require elaborate, subsequent machining. In the present study, we successfully demonstrated the following: (1) superplastic 3Y-TXP and 20 percent Al2O3/YTZ composite have for the first time been successfully deformed into hemispherical caps via a biaxial gas-pressure forming technique; (2) no experimental difficulty was encountered in applying the required gas pressures and temperatures to achieve the results, thus, it is certain that higher rates of deformation than those presented in this study will be possible by using the current test apparatus at higher temperatures and pressures; and (3) an analytical model incorporating material parameters, such as variations during forming in the strain rate sensitivity exponent and grain growth-induced strain hardening, is needed to model accurately and therefore precisely control the biaxial gas-pressure forming of superplastic ceramics. Based on the results of this study, we propose to fabricate zirconia insulation tubes by superplastic extrusion of zirconia polycrystal. This would not only reduce the cost, but also improve the reliability of the tube products

    Maximum thickness of amorphous NiZr interlayers formed by a solid-state reaction technique

    Get PDF
    Formation of the equilibrium intermetallic compound NiZr in sputter deposited Ni/Zr diffusion couples is suppressed by the formation of a metastable amorphous NiZr alloy until a critical thickness of the amorphous NiZr interlayer is reached. The temperature dependence of this critical thickness is studied experimentally. A phenomenological model based on the premise of interfacial heterogeneous nucleation is proposed to understand the evolution of Ni/Zr diffusion couples

    Lattice distortions in YBa2Cu3O7–delta thin films grown in situ by sequential ion beam sputtering

    Get PDF
    We have analyzed epitaxial, c-axis oriented YBa2Cu3O7–delta thin films grown in situ by sequential ion-beam sputtering on (100) SiTiO3 and (100) MgO substrates. X-ray diffraction studies showed the presence of both homogeneous and inhomogeneous lattice distortions along the c-direction. The c-axis lattice parameters ranged from 11.72 to 12.00 Å. The broadening of the (00l) Bragg peaks in excess of the broadening due to finite film thickness was found to be due to inhomogeneous lattice distortions. The overall trend in the data shows an increase of the inhomogeneous strains with the enlargement of the c-axis lattice parameter. The inhomogeneous lattice distortions are interpreted as fluctuations in the c-axis lattice parameter. The resistive transitions were found to be correlated to the lattice distortions. We show correlations between the midpoint Tc and the c-axis lattice parameter and between the transition widths and the inhomogeneous lattice distortions

    Correlations between deposition parameters and structural and electrical properties of YBa2Cu3O7–delta thin films grown in situ by sequential ion beam sputtering

    Get PDF
    We have studied the correlations between deposition parameters and structural and electrical properties of YBa2Cu3O7–delta thin films grown in situ by sequential ion beam sputtering. Epitaxial, c-axis oriented YBa2Cu3O7–delta films were grown both on (100) SrTiO3 and on (100) MgO substrates following the stacking sequence of the ``123'' compound, with deposited layer thicknesses nominally equal to 1 monolayer. The c-axis lattice parameters obtained were larger than the corresponding lattice parameter in bulk samples, even after low-temperature anneals in O2. The transition temperatures were found to decrease with the enlargement of the c-axis lattice parameter. A clear correlation between growth temperature and the value of the c-axis lattice parameter was observed. The c-axis lattice parameter and the x-ray linewidth of Bragg reflections with the G vector along the c-axis were also found to be correlated. This suggests a relationship between the c-axis lattice parameter and the structural coherence of the epitaxial films

    Compositional modulation in AlxGa1−xAs epilayers grown by molecular beam epitaxy on the (111) facets of grooves in a nonplanar substrate

    Get PDF
    We report the first observation of a lateral junction formed in an alloy due to an abrupt transition from segregated to random AlGaAs alloy compositions. Al0.25Ga0.75As epilayers were grown by molecular beam epitaxy on [011-bar] oriented grooves in a nonplanar (100) GaAs substrate. A quasi-periodic modulation of the aluminum concentration occurs spontaneously in material grown on the (111) facets of the groove, with a period of 50–70 Å along the [111] direction. The compositional modulation is associated with a reduction of the band gap by 130 meV, with respect to the random alloy. While segregation of the AlGaAs alloy has been seen previously, this is the first observation of segregation of AlGaAs grown on a (111) surface. The compositional modulation terminates abruptly at the boundaries of the (111) facet, forming abrupt lateral junctions in the AlGaAs layers grown on a groove

    Indium oxide diffusion barriers for Al/Si metallizations

    Get PDF
    Indium oxide (In2O3) films were prepared by reactive rf sputtering of an In target in O2/Ar plasma. We have investigated the application of these films as diffusion barriers in Si/In2O3/Al and Si/TiSi2.3/In2O3/Al metallizations. Scanning transmission electron microscopy together with energy dispersive analysis of x ray of cross-sectional Si/In2O3/Al specimens, and electrical measurements on shallow n + -p junction diodes were used to evaluate the diffusion barrier capability of In2O3 films. We find that 100-nm-thick In2O3 layers prevent the intermixing between Al and Si in Si/In2O3/Al contacts up to 650°C for 30 min, which makes this material one of the best thin-film diffusion barriers on record between Al and Si. (The Si-Al eutectic temperature is 577°C, Al melts at 660°C.) When a contacting layer of titanium silicide is incorporated to form a Si/TiSi2.3/In2O3/Al metallization structure, the thermal stability of the contact drops to 600°C for 30 min heat treatment

    An experimental study of high Tc superconducting microstrip transmission lines at 35 GHz and the effect of film morphology

    Get PDF
    Microstrip transmission lines in the form of ring resonators were fabricated from a number of in-situ grown laser ablated films and post-annealed co-sputtered YBa2Cu3O(7-x) films. The properties of these resonators were measured at 35 GHz and the observed performance is examined in light of the critical temperature (Tc) and film thickness and also the film morphology which is different for the two deposition techniques. It is found that Tc is a major indicator of the film performance for each growth type with film thickness becoming important as it decreases towards 100 A. It is also found that the films with a mixed grain orientation (both a axis and c axis oriented grains) have poorer microwave properties as compared with the primarily c axis oriented material. This is probably due to the significant number of grain boundaries between the different crystallites, which may act as superconducting weak links and contribute to the surface resistance

    Reply to the comment by D. Kreimer and E. Mielke

    Get PDF
    We respond to the comment by Kreimer et. al. about the torsional contribution to the chiral anomaly in curved spacetimes. We discuss their claims and refute its main conclusion.Comment: 9 pages, revte
    corecore