479 research outputs found

    System analysis for the Huntsville Operational Support Center distributed computer system

    Get PDF
    The Huntsville Operations Support Center (HOSC) is a distributed computer system used to provide real time data acquisition, analysis and display during NASA space missions and to perform simulation and study activities during non-mission times. The primary purpose is to provide a HOSC system simulation model that is used to investigate the effects of various HOSC system configurations. Such a model would be valuable in planning the future growth of HOSC and in ascertaining the effects of data rate variations, update table broadcasting and smart display terminal data requirements on the HOSC HYPERchannel network system. A simulation model was developed in PASCAL and results of the simulation model for various system configuraions were obtained. A tutorial of the model is presented and the results of simulation runs are presented. Some very high data rate situations were simulated to observe the effects of the HYPERchannel switch over from contention to priority mode under high channel loading

    Chapter 5.3. Antarctic Free-Living Marine Nematodes

    Get PDF

    An investigation of error characteristics and coding performance

    Get PDF
    The first year's effort on NASA Grant NAG5-2006 was an investigation to characterize typical errors resulting from the EOS dorn link. The analysis methods developed for this effort were used on test data from a March 1992 White Sands Terminal Test. The effectiveness of a concatenated coding scheme of a Reed Solomon outer code and a convolutional inner code versus a Reed Solomon only code scheme has been investigated as well as the effectiveness of a Periodic Convolutional Interleaver in dispersing errors of certain types. The work effort consisted of development of software that allows simulation studies with the appropriate coding schemes plus either simulated data with errors or actual data with errors. The software program is entitled Communication Link Error Analysis (CLEAN) and models downlink errors, forward error correcting schemes, and interleavers

    The Communication Link and Error ANalysis (CLEAN) simulator

    Get PDF
    During the period July 1, 1993 through December 30, 1993, significant developments to the Communication Link and Error ANalysis (CLEAN) simulator were completed and include: (1) Soft decision Viterbi decoding; (2) node synchronization for the Soft decision Viterbi decoder; (3) insertion/deletion error programs; (4) convolutional encoder; (5) programs to investigate new convolutional codes; (6) pseudo-noise sequence generator; (7) soft decision data generator; (8) RICE compression/decompression (integration of RICE code generated by Pen-Shu Yeh at Goddard Space Flight Center); (9) Markov Chain channel modeling; (10) percent complete indicator when a program is executed; (11) header documentation; and (12) help utility. The CLEAN simulation tool is now capable of simulating a very wide variety of satellite communication links including the TDRSS downlink with RFI. The RICE compression/decompression schemes allow studies to be performed on error effects on RICE decompressed data. The Markov Chain modeling programs allow channels with memory to be simulated. Memory results from filtering, forward error correction encoding/decoding, differential encoding/decoding, channel RFI, nonlinear transponders and from many other satellite system processes. Besides the development of the simulation, a study was performed to determine whether the PCI provides a performance improvement for the TDRSS downlink. There exist RFI with several duty cycles for the TDRSS downlink. We conclude that the PCI does not improve performance for any of these interferers except possibly one which occurs for the TDRS East. Therefore, the usefulness of the PCI is a function of the time spent transmitting data to the WSGT through the TDRS East transponder

    Temporal and spatial variation in the Nazaré Canyon (Western Iberian margin): Inter-annual and canyon heterogeneity effects on meiofauna biomass and diversity

    Get PDF
    The Nazaré Canyon on the Portuguese Margin (NE Atlantic) was sampled during spring-summer for three consecutive years (2005–2007), permitting the first inter-annual study of the meiofaunal communities at the Iberian Margin at two abyssal depths (~3500 m and ~4400 m). Using new and already published data, the meiofauna standing stocks (abundance and biomass) and nematode structural and functional diversity were investigated in relation to the sediment biogeochemistry (e.g. organic carbon, nitrogen, chlorophyll a, phaeopigments) and grain size. A conspicuous increase in sand content from 2005 to 2006 and decrease of phytodetritus at both sites, suggested the occurrence of one or more physical disturbance events. Nematode standing stocks and trophic diversity decreased after these events, seemingly followed by a recovery/recolonisation period in 2007, which was strongly correlated with an increase in the quantity and bioavailability of phytodetrital organic matter supplied. Changes in meiofauna assemblages, however, also differed between stations, likely because of the contrasting hydrodynamic and food supply conditions. Higher meiofauna and nematode abundances, biomass and trophic complexity were found at the shallowest canyon station, where the quantity, quality and bioavailability of food material were higher than at the deeper site. The present results suggest that even though inter-annual variations in the sedimentary environment can regulate the meiofauna in the abyssal Nazaré Canyon, heterogeneity between sampling locations in the canyon were more pronounced
    • …
    corecore