
NASA-CR-200722

Further Developments in the
Communication Link and Error ANalysis (CLEAN)

Simulator

,...';,t/- _" 2-_: ¢C

_,-f/) r f "_;-'-'"

...... ":/0

NASA GRANT NAG5-2006

Final Report
July 1, 1993- June 30, 1994

Submitted to:

Mr. Warner Miller
Code 728.4

Instrument Electronic Systems Branch
Engineering Directorate

NASA/Goddard Space Flight Center
Greenbelt, MD 20771

301-286-8183

Submitted by:

William J. Ebel, Ph.D.
Frank M. Ingels, Ph.D.

Mississippi State University
Drawer EE

Mississippi State, MS 39762
601-325-3912

December 1995

https://ntrs.nasa.gov/search.jsp?R=19960017617 2020-06-16T05:05:42+00:00Z



Abstract

This report documents work performed for NASA Grant NAG5-2006 for the period July 1,
1993 through June 30, 1994. During this period, significant developments to the Communication

Link and Error ANalysis (CLEAN) simulator were completed. Many of these were reported in

the Semi-Annual report dated December 1993 which has been included in this report in

Appendix A. Since December 1993, a number of additional modules have been added involving

Unit-Memory Convolutional codes (UMC). These are:

1) Unit-Memory Convolutional Encoder module (UMCEncd)

2) Hard decision Unit-Memory Convolutional Decoder using the Viterbi decoding

algorithm (VitUMC)

3) A number of utility modules designed to investigate the performance of UMC's such
as

a) UMC column distance function (UMCdc)

b) UMC free distance function (UMCdffee)

c) UMC row distance function (UMCdr)

d) UMC Transformation (UMCTrans)

The study of UMC's was driven, in part, by the desire to investigate high-rate convolutional
codes which are better suited as inner codes for a concatenated coding scheme. A number of

high-rate UMC's were found which are good candidates for inner codes.

Besides the further developments of the simulation, a study was performed to construct a

table of the best known Unit-Memory Convolutional codes. To date, a total of 100 new UMC's

were found which are better than any previously known UMC's. These results have been

submitted and accepted to the 1EEE Transactions on Information Theory and will appear in print

soon. A copy of the final paper is included in Appendix B for reference.

Will Ebel

Assistant Professor

cc: Ms. Gloria R. Blanchard



I. Introduction

During the past year, CLEAN capabilities have grown substantially. Most of the new

programs are briefly described in the semi-Annual report included in Appendix A. Among the

developments is the integration of the RICE compression/decompression software into the

simulation. Not included in that report are a number of modules involving encoding, decoding,

and analysis of Unit-Memory convolutional codes.



2

AppendixA

Semi-AnnualReportfor theperiodJuly 1, 1993throughDecember30, 1993



TheCommunicationLink andErrorANalysis (CLEAN)
Simulator

NASA GRANT NAG5-2006
July 1, 1993-June 30, 1994

Semi-AnnualReport
July 1, 1993-December30, 1993

Submittedto:

Mr. WarnerMiller
Code 728.4

Instrument Electronic Systems Branch
Engineering Directorate

NASA/Goddard Space Flight Center
Greenbelt, MD 20771

301-286-8183

Submitted by:

William J. Ebel, Ph.D.

Frank M. Ingels, Ph.D.
Shane Crowe

Mississippi State University
Drawer EE

Mississippi State, MS 39762
601-325-3912

December 1993



Table of Contents

Abstract ............................................................................................................................. i

I. Introduction ................................................................................................................... 1

II. Further Developments to Clean ................................................................................... 7

A. Soft Decision Program Modules ........................................................................... 7
1. iidsoft ................................................................................................................ 7

2. bstysoft ............................................................................................................. 8

3. displsft .............................................................................................................. 8

4. harden ............................................................................................................... 9

5. soften ................................................................................................................ 9

6. dpcisoft ............................................................................................................. 9

7. vitsoft ................................................................................................................ 10

8. vit3sync ............................................................................................................. 11

B. Markov Chain Program Modules .......................................................................... 11
1. markov .............................................................................................................. 12

2. markup .............................................................................................................. 12
3. markdown ......................................................................................................... 12

4. markjoin ............................................................................................................ 13

5. displmrk ............................................................................................................ 13

6. deintmrk ............................................................................................................ 13

C. RICE Program Modules ........................................................................................ 14
1. rieeeomp ........................................................................................................... 14

2. rieedemp ........................................................................................................... 14

3. img2seq ............................................................................................................. 14

4. seq2img ............................................................................................................. 14

D. Miscellaneous Program Modules .......................................................................... 14
1. convened ........................................................................................................... 15

2. delete ................................................................................................................. 15

3. insert ................................................................................................................. 15

4. help ................................................................................................................... 15
5. madd ................................................................................................................. 16

6. pnseq ................................................................................................................. 17
7. trellis ................................................ . ................................................................ 17

8. genhdf ............................................................................................................... 18

III. Periodic Convolutional Interleaver ............................................................................ 20

BIBLIOGRAPHY .............................................................................................................44



Abstract

This report documents work performed for NASA Grant NAG5-2006 for the period July 1,

1993 through December 30, 1993. During this period, significant developments to the

Communication Link and Error ANalysis (CLEAN) simulator were completed and include:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Soft decision Viterbi decoding

Node synchronization for the Soft decision Viterbi decoder

Insertion/deletion error programs

Convolutional Encoder

Programs to investigate new convolutional codes

Pseudo-Noise sequence generator

Soft decision data generator

RICE compression/decompression (integration of RICE code generated by Pen-Shu

Yeh at Goddard Space Flight Center)

Markov Chain channel modeling

% complete indicator when a program is executed

Header documentation

Help utility

The CLEAN simulation tool is now capable of simulating a very wide variety of satellite

communication links including the TDRSS downlink with RFI. The RICE

compression/decompression schemes allow studies to be performed on error effects on RICE

decompressed data. The Markov Chain modeling programs allow channels with memory to be
simulated. Memory results from filtering, forward error correction encoding/decoding,

differential encoding/decoding, channel RFI, non-linear transponders and from many other

satellite system processes.

Besides the development of the simulation, a study was performed to determine whether

the PCI provides a performance improvement for the TDRSS downlink. There exist RFI with

several duty cycles for the TDRSS downlink. We conclude that the PCI does not improve

performance for any of these interferers except possibly one which occurs for the TDRS East.
Therefore, the usefulness of the PCI is a function of the time spent transmitting data to the

WSGT through the TDRS East transponder.



I. Introduction

During the past 6 months, CLEAN capabilities have grown substantially. Most of the new

programs are briefly described in Section II. Among the developments is the integration of the

RICE compression/decompression sof_ccare into the simulation. In the Appendix, the theory of

RICE compression is described along with a description of CLEAN implementation. In Section
III, some results on the question of whether the PCI is really necessary for the TDRSS down/ink
is discussed.

To help run the source code, the following list in given which provides a quick overview of

the required input files and the output files which are associated with each program of CLEAN.

filename(s).pdf ..... > ascii.exe

I

id.prm > [[
binerrs.prm > binerrs.exe

.> specified.file

......... > binerrs.ID

..... > seq.err

id.prm >

bingap.prm .> bingap.exe ........ > bingap.ID

--------> bingap.pdf

id.prm > Iblkdecod.prm .>

seq.err L : >

id.prm > I
blkdeint.prm >

seq.err -_-->

blkdecod.exe

blkdeint.exe

> blkdecod.ID

-_> seq.err

> blkdeint.ID

> seq.err

id.prm >

brsterrs.prm ,> brsterrs.exe > brsterrs.ID

> seq.err

bstyerrs.prm - .> bstyerrs.exe > bstyerrs.ID

> seq.err

id.prm .................. >

bstyerrs.prm ............ > bstysoft.exe

..........> soRmap.dat

..........> bstysofi.ID

..........> seq.sft



id.prm .>

seq.(err, sfi, mrk) #1,#2 ->

id.prm .>

cvmblk.prm .>

seq.err ............. >

id.prm ................ >

seq.err ............ >

id.prm >

blkdeint.prm .>

seq.mrk >

id.prm ..... , _>

deltaest.prm - - ,L_>

seq.err >

id.prm .>

seat.err >

id.prm ,>

seq.mrk ,>

id.prm ....... >

interactive inputs .... >

seq.(err, sfl,mrk) -__w>

id.prm ..... >

interactive inputs ...... >

seq.(err, sfi,mrk) .... >

id.prm .->

seq.sft >

j
i

J

compseq.exe

cvmblk.exe

cvmseq.exe

deintmrk,exe

deltaest.exe

displerr.exe

displmrk.exe

displseg.exe

displseq.exe

displsft.exe

I .......... > compseq.ID

I ......... > cvmblk.ID

I ....... > cvmseq.ID

........ > deintmrk.ID

.......... > seq.mrk

I -w------> deltaest.ID

_--> displerr.ID
-'-------> seq.err screen dump

I _------> displmrk.ID
..... > seq.mrk screen dl_p

I .... > displseg.ID
.... > segment screen dump

I ........ > displseq.ID
........ > sequence screendump

.......... > displsft.ID

.......... > seq.sff screen dump



id.prm ............... >
dpci.prm ............... >

seq.err ................ >

id.prm .................. >

dpci.prm ................ >

seq.sft ................ >

id.prm ................ >

WTFF error file ........ >

WTFF error file .>

id.prm ...... _ _>

gapest.prm .>

seq.err ......... >

dpci.exe

dpcisoft.exe

eosconv.exe

eoshex.exe

.......... dpci.ID
>

.......... > seq.err

II ......... dpcisot_.ID
>

.......... > seq.stt

.......... > eosconv.ID

........ > seq.err

I .......... > file screen dump

__> gapest.ID

interactive inputs .... >

id.prm ......... >

interactive inputs .... >

id.prm >

seq.sft ->

l
i
I

genhdf.exe

genmap.exe

harden.exe

....... geahdf.ID
>

I -_-----> genmap.ID

I > harden.ID
..... > seq.err

help.exe ......... > help screen dump

id.prm >

binerrs.prm ............. > iidsofi.exe .......... > iidsoft.ID

.......... > seq.sfi



id.prm ................. >
interactiveinputs...... >

id.prm................ >
interactiveinputs...... >

id.prm >

seq.err .>

id.prm ..... >
joinseq.prm............ >
seq.err................ >

id.prm ........ >

interactive inputs -_->

id.prm .......... >

mafilt.prm ..... >

stq.err -- , >

id.prlTl -_>

markdown.prm -- ,>
seq.mrk >

id.prm -_> I
markjoin.prm >

seq.mrk >

id.prm >

markov.prm >

id.prm ->

markup.prm .............. >

seq.mrk ............... >

!

!

I
I
!

img2seq.exe

intvbin.exe

intvpdf.exe

joinseq.exe

madd.exe

mafilt.exe

markdown.exe

markjoin.exe

markov.exe

markup.exe

I .......... > img2seq.ID.......... > user file

II .......... intvpdf.ID
>

..... > interval.pdf

I ......... >
joinseq.ID

.......... > seq.err

1----------> madd.ID

........ > mafilt.ID

I ..... > rnarkjoin.ID

........ > markov.ID

----------> seq.mrk

......... markup.ID
>

.......... > seq.err

4



5

id.prm > II'seq.err ................ >

nrzrndec.exe
II .......... nrzmdec.ID

>

.......... > seq.err

id.prm >

seq.err > nrzmencd.exe I .......... >nrzmencd.ID
.......... > seq.err

id.prm ................. >

pnseq.prm .> J pnseq.exe
I .> pmeq.ID

-> sequence.pn

id.prm >

interacuve inputs ...... > quantpdfexe
I .> quantpdf.ID......... > user pdf file

interacuve inputs .... > queryseq.exe ..... > header.(extemion)

id.prm ->

interacuve inputs ..... > rawhdr.exe ....... > rawhdr.ID

interacuve inputs _N_> ricecomp.exe
--_> ricecomp.ID

interactlve inputs .... > ficedcmp.exe
I ........ > ricedcmp.ID

id.prm >

interactive inputs ...... > seq2img.exe
II > seq2img.ID....... > user image file

interactwe inputs ...... >
seqarc.exe I .......... > errseq.arc



id.prm .............. >

interactive inputs ...... >

id.prm ............. >

interactive inputs ..... >

id.prm ................. >

interactive inputs ...... >

id.prm ........ >

sync.prm >

seq.err ,.>

seqtrunc.exe

sequnarc.exe

seterrs.exe

sync.exe

I .......... > seqtrunc.ID
........ > truncated seq

.......... > sequnarc.ID

.......... > seq.err

II .......... > seterrs.ID
...... > seq.err

I ......... > sync.ID

6

interactive inputs ----> syncpb.exe ..... > synepb.log

interactive inputs .... >

id.prm ..... . .... >

interactive inputs -_>

id.prm _>

viterbi.prm ->

seq.err •

id.prm •

viterbi.prm •

seq.err ......... •

id.prm .................. •

viterbi.prm ............. •

seq.sft ................. •

i
l

syncppn.exe

trellis.exe

vithard.exe

vitmark.exe

vitsoft.exe

I .... > syncppn.log

--------> trellis.ID

..... • trellis.pit

..... • vithard.ID

__> seq.err

...... • vitmark.ID

....... • seq.err

II ........ • vitsoft.ID
.......... > seq.err



[L Further Developments to Clean

This section briefly describes additional capabilities which have been added to CLEAN.

The capabilities have been divided into two main sections. In Section A, additional error

sequence manipulation programs, which represent system components, are briefly described and

in Section B, programs written to evaluate theoretical formulas are briefly described.

A. Soft Decision Program Modules

To more accuratelyreflectthe receiver,programs were writtento simulatesoR decision

valueswhich are output by the demodulator forthe realTDRSS. These programs involve "soR"

sequence generationprograms as well as programs tomimic the receiverDPCI and Viterbi
decoder on those soR values.

1. iidsoft

This program generatesa "soR" errorsequence with independentand identically

distributedsoR event occurrences. By definition,an ERROR sequence MUST referto hard

decisiondataatthe demodulator output. In contrast,thisprogram simulates3-bitsoR decision

data which would be outputby a softdecisiondemodulator,assuming thatthesignaltransmitted

correspondstothe transmissionof a binaryzero. The algorithminvolvesusing the channel error

probability,inputby the userthrough the parameter file,toconstructthe conditionalNormal

densitiesfortherandom variablewhich would be inputtoa multilevelthresholdertodetermine

the 3-bitsoftdecisionoutput. For convenience, itisassumed thatthe receivedsignalsare

identically+ I,-1fora binary 1,0respectivelyand thatthe decisionthresholds,used toconstruct

the 3-bitsoftdecisiondatanumbers, are locatedatequl-spaceddistancesaround +I and -I

inclusive.Then, the 3-bitbinarynumber assigned toeach levelbegins with 000 forthe range

below -land end with lII forthe range above + I. In summary, the thresholdsarearbitrarily

chosen as follows:

3-bit value

7

6

5

Binary rep. Low Thresh.

infmity111

110 3/2 1

101 2 1/2

I-Iigh

3/2

4 100 1/2 0

3 011 0 -1/2

2 010 -1

0011

0

-I/2

-I

-3/2000

-3/2

- infinity

Note that the first binary value to be output is the least significant digit for the soR value.

These threshold values were taken from Heller and Jacobs, "Viterbi Decoding for Satellite and

Space Communication," IEEE Transactions Communication Technology, vol. COM19, no. 5,

October 1971, pp. 835-848.



To determine the softdecisionvaluesforeach signaloutput,the probabilityof occurrence

foreach levelmust be found and subsequentlyused tostatisticallydetermine the sequence

output. The probabilitythatthe i(th)soR value occursisstoredin SoftProb(i)which can be

found using the Q(x) function.As implemented below, the cumulative SoftProb isstoredin

SoftProb,thatis,SoRProb(i) representsthe probabilitythatsoR value i,or i-l,...,or 0 occurs.

This isdone tooptimize executionspeed. Itispossibleto thresholdthe softsequence with a

thresholdof 0 toperform hard decisiondemodulation.

This program inputs parameters from an ASCII data file with default name 'BinErrs.prm'

and outputs the "soft" error sequence to data file with default name 'seq.sft'. In addition, various

statistics are output to an ASCII data file with default name 'IIDSoft.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'BinErrs.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.sft' file which contains a sequence (in packed format) with

independent and identically distributed soft values. It does not matter whether the output file

'seq.sft' exists or not. If it exists, it is overwritten without a prompt to the user.

2. bstysoft

This program generatesa "soft"errorsequence with burstyerrors.The method for

generatingthesoftvaluesisdiscussedinthe previoussectionforthe iidsoRprogram

documentation. The applicationhere isidenticalexceptthattwo SoRProb functionsare required:

one when a burstisoccurringand one when no burstisoccurring.

A discussionof the method by which theburstlengthand burstintervalstatisticsare

generated can be found in the documentation of program bstyerrs.for.

This program inputs parameters from an ASCH data file with default name 'BstyEtrs.prm'

and outputs the soft sequence to a data file with default name 'seq.sft'. In addition, various

statistics are output to an ASCII data file with default name 'BstySoR.ID', where ID is a three
letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'BstyErrs.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.sft' file which contains a "soft" error sequence (in packed format). It
does not matter whether the file 'seq.sft' exists or not. If it exists, it is overwritten without a

prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not allow

bursts to Overlap. The user must take care to specify input parameters so that the probability of

overlapping burst is negligible.

3. dispisft

This program displays the soft sequence found in file 'seq.sR'. It is assumed that the 3-bit

soft values stored in seq.sft are in the SSPS (Soft Sequence Packed Symbol) format.



9

4. harden

This program reads in 3-bit soft decision data and performs hard decision thresholding.

This will effectively reduce the length of the sequence file by a factor of 3.

The program reads in the soft sequence by blocks and performs hard decision thresholding
on each block and then writes the modified block back out to the 'seq.err' file. The program

outputs several statistics to the user screen as well. Note that the sequence is read in from file

'seq.sft' (SeqType=2), with 3-bit soft data and is stored in file 'seq.err' (SeqType=l), with hard

errors.

Executing the program causes the 'seq.sft' file to be read which contains a soft value

sequence (in packed format). The 'seq.sft' file must exist prior to the execution of this program.

5. soften

This program maps binary data into soft values out of the soft decision demodulator. The

method used to perform this mapping is to combine the data sequence with an already existing

soft sequence. Consider a particular data bit and the corresponding soft value from the soft

sequence. If the data bit is a zero, then the soft value which would occur at the demodulator

output remains the same. However, if the data bit is a 1, then the soft value which would occur
at the demodulator output is the bit complement of the corresponding soft value. The bit

complement can be achieved by taking 8 and subtracting the basel0 equivalent of the soft value.
For a discussion of how soft values are generated at the demodulator output, see Section I above.

This program inputs the data from file 'seq.dat' and the soft sequence from file 'seq.sft'

and stores the result in the 'seq.sft' file. In addition, various statistics are output to an ASCII
data file with default name 'Soften.ID', where ID is a three letter identifier for the current run

which is input from file 'ID.prm'.

Executing the program causes the 'seq.sft' file to be modified. Before running this

program, sequences 'seq.dat' and 'seq.sft' must exist.

6. dpcisoft

This program performs Periodic Convolutional Deinterleaving of the soft sequence found

in file 'seq.sft'. It is assumed that the channel symbols corresponding to those values have

already been interleaved using an (Ntaps,M) periodic convolution interleaver. The method used

to implement the function of the periodic convolutional interleaver is a series of formulas as
described below. These functions are applied to a portion of the 'seq.sft' array which is stored in

a ring buffer.

The method used to implement the deinterleaver involves constructing a Tap offset array

which gives the offset for the soft sequence index to deinterleave next, based upon the tap

position of the deinterleaver commutator. The Cycle offset is then used to determine the offset
for the current commutator cycle number which is also used to determine the soft sequence index

to deinterleave.

Note that there is a problem deinterleaving the end of the 'seq.sft' file due to the sequential

nature of the algorithm. The DPCI soft sequence file is truncated to eliminate the "don't cares".



I0

This program inputs parameters from an ASCII data file with default name 'DPCI.prm'

and outputs the soft sequence to data file with default name 'seq.sft'. In addition, various

statistics are output to an ASCII data file with default name 'DPCISoft.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'DPCI.prm' and selecting the appropriate

parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program

generates the 'seq.sft' file which contains an soft sequence (in packed format) with deinterleaved

values. The 'seq.sft' file must exist prior to the execution of this program.

7. vitsoft

This program performs soft decision Viterbi decoding assuming ANY data sequence is
transmitted. The Viterbi decoding algorithm assumes that the trellis begins at the all zero state

for the first received code symbol. The end of the decoding process does not terminate with

flush bits. Instead, steady state Viterbi decoding is performed up to the end of the data seq.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and inputs the soft sequence from file 'seq.sft' and outputs the decoded data sequence to data file
with default name 'seq.err'. In addition, various statistics are output to an ASCII data file with

default name 'VitSoft.ID', where ID is a three letter identifier for the current run which is input

from file 'ID.prm'.

The program is run by editing the parameter file 'Viterbi.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.err' file which contains an error sequence (in packed format) with the
decoded error sequence. The 'seq.sft' file must exist prior to the execution of this program.

There are several assumptions associated with the implementation and output of this

program.

1) The path with the maximum probability metric at the i(th) Trellis stage is used to fred the

decoded bit for the output

2) It is assumed that the convolutional eneoder is either rate 1/2 or rate 1/3. It is straight

forward to extrapolate this program to accommodate a rate 1/n encoder. It should also be

possible to modify this program to accommodate a rate m/n encoder.

The Viterbi algorithm, as implemented here, updates the Trellis by iterating through each

of the states at the next stage. The probability metric for each path entering a given state are

computed and the survivor is kept while the other sequence is discarded. In case of a tie, a coin

is flipped (via a Uniform RV in [0,1]) to determine the survivor. The survivor is identified by

updating the MLStateTrace array. This array contains the state of the previous Trellis stage
which connects to the given state being processed. For example, suppose that we are now

processing the next stage in the Trellis, we first consider state 1 at the next stage. After

investigating the probability metric for the two possible paths entering state 1, we find that the

survivor path came from state 3 of the previous Trellis stage. Therefore, MLStateTrace(i,1) = 3

where i is the stage index.



11

To preventoverwritingtheMetric array,two Metric arraysarealternately processed for

each Trellis stage. This is why the algorithm performs two Trellis stage updates for each main
loop. In the first Trellis stage update, the metrics are found in array MetricA and the new metrics

are stored in MetricB. In the second Trellis stage update, the metrics are found in array MetricB
and the new metrics are stored in MetricA.

The Trellis is defined via three arrays; PathCodeSym, PathLink, and PathBit. Since this

program only accommodates rate 1/2 or 1/3 encoders, only two paths enter each state at a given

trellis stage. Therefore, if there are N trellis states, then there are only 2*N possible paths

between two trellis stages. These are sequentially numbered from 1 to 2*N where path number 1

and 2 enter state 1, path 3 and 4 enter state 2, etc. Array PathLink(i) gives the state number from

which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path i, and

PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely
define the steady state trellis.

8. vit3sync

This program operates like the vitsoft program. However, this program mimics exactly
what happens in the real LV7017C hardware which is documented in an interoffice

Memorandum written by James Wang and Wei-Chung Peng of LinCom with subject,
"Simulation and Validation of Viterbi Decoder", TM-8719-05-09 and TM-8707-06, 01 March

1989. The vitsott modifications performed to construct this program are as follows.

1) The metrics which are accumulated are arbitrarily chosen as described in an interoffice

Memorandum mentioned above. This program mimics exactly what occurs in the real LV7017C
hardware.

2) The metrics are monitored to determine whether node synchronization is lost. If node

synchronization is lost, then the alternate bit pairings of the received data is chosen in an attempt

to resync. The metrics are monitored again to determine whether synchronization has been
established.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and inputs the soft sequence from file 'seq.sft' and outputs the decoded data sequence to data file

with default name 'seq.err'. In addition, various statistics are output to an ASCII data file with

default name 'Vit3Sync.lD', where I13 is a three letter identifier for the current run which is input

from file 'ID.prm'.

The program is run by editing the parameter file 'Viterbi.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.err' file which contains an error sequence (in packed format) with the

decoded error sequence. The 'seq.stl' file must exist prior to the execution of this program.

B. Markov Chain Program Modules

Most processes which are used to manipulate and communicate binary data from a source
to an end user can be modelled accurately by a Markov Chain. This includes differential coding,

error correction coding, filtering, non-linearities, and more. In short, it should be possible to

model the TDRSS downlink using a Markov Chain with an appropriate number of states. It is

only necessary to determine the number of states and the transition probabilities. Estimating the



12

transitionprobabilitiescanbeaccomplishedusingtheBaum-Welchalgorithm[4]. Although the
Baum-Welchalgorithmhasnotbeenimplementedin thesimulation,programswhich involve
MarkovChainshavebeenincorporatedinto thesimulationto meetthis goal. These are
described below.

1. markov

This program generates a sample state sequence which is representative of a Markov Chain

with known transition probability matrix. Each state is assigned a number from 0 to N-1 where
N is the number of states.

This program inputs parameters from an ASCII data file with default name 'Markov.prm'

and outputs a state sequence with default name 'seq.mrk'. In addition, various statistics are

output to an ASCII data file with default name 'Markov.ID', where ID is a three letter identifier

for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'Markov.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.mrk' file which contains the state sequence It does not matter

whether the output file 'seq.mrk' exists or not. If it exists, it is overwritten without a prompt to
the user.

2. markup

This program reads in a state sequence and performs hard decision thresholding for the

upper bound case.

The program reads in the state sequence by blocks and performs hard decision thresholding
on each block and then writes the modified block out to file 'seq.err'. The program outputs

several statistics to the user screen as well. Note that the sequence is read in from file 'seq.mrk'

(SeqType=5), with Markov Chain states and is stored in file 'seq.err' (SeqType=l), with hard

errors.

Executing the program causes the 'seq.mrk' file to be read which contains a state

sequence. The 'seq.mrk' file must exist prior to the execution of this program.

3. markdown

This program reads in a state sequence and performs hard decision thresholding for the

lower bound case.

The program reads in the state sequence by blocks and performs hard decision thresholding
on each block and then writes the modified block out to file 'seq.err'. The program outputs

several statistics to the user screen as well. Note that the sequence is read in from file 'seq.mrk'

(SeqType=5), with Markov Chain states and is stored in file 'seq.err' (SeqType= 1), with hard

errors.

Executing the program causes the 'seq.mrk' file to be read which contains a state

sequence. The 'seq.mrk' file must exist prior to the execution of this program.



13

4. markjoin

This program generates the joint event probabilities for joints events associated with
received codewords in the state seq. It is assumed that each state in the received sequence

corresponds to a code symbol. The algorithm involves partitioning the state sequence into

n-state blocks, where n is the code blocklength, called the received codeword state. The number

of each state which occurs within a received codeword state constitutes a single sample point for

the joint state event. The number of each joint event is accumulated and the total for each is

divided by the number of received codeword states to determine the empirical probability. The

only problem with this procedure is defining an efficient method for identifying each joint event.

The method used in this program is to define an array, Joint(i), in which all joint events would be

stored in a unique location. If the Markov Chain has S states, then there are [(n+S+l) choose

(n]) number of ways that a specific number of each state occurs in the received codeword state.
Ifa received codeword state has nl, n2, ..., nS number of occurrences of states sl, s2, ..., sS,

respectively, then the Joint array location which contains this joint event is computed on the fly

as given in subroutine Statelndex.

This program inputs parameters from an ASCII data file with default name 'MarkJoin.prm'

and inputs the state sequence from data file with default name 'seq.mrk' and outputs the joint

probabilities to ASCII data file with default name 'MarkJoint.ID', where ID is a three letter

identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'MarkJoin.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. The 'seq.mrk'

file must exist prior to the execution of this program.

5. displmrk

This program displays the sequence found in the file 'seq.mrk'. This file must be of type

SeqType = 5 (state).

6. deintmrk

This program performs block deinterleaving of the state sequence found in file 'seq.mrk'.
It is assumed that the channel symbols corresponding to those states have already been

interleaved using an (C,R,m) block interleaver. The deinterleaver groups every m state seq

values together and deinterleaves them as a group. The method used to implement the function
of the block interleaver is to read in a block of the state seq and to use a series of formulas to

perform the block deinterleaving. These formulas are described in the blkdeint program [5]

This program inputs parameters from an ASCII data file with default name

'DeintMrk.prm' and outputs the state sequence to data file with default name 'seq.mrk'. In

addition, various statistics are output to an ASCII data file with default name 'DeintMrk.ID',
where ID is a three letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'DeintMrk.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the

program generates the 'seq.mrk' file which contains an state sequence with deinterleaved states.

The 'seq.mrk' file must exist prior to the execution of this program.



14

C. RICE Program Modules

In an effort to investigate the interaction between RICE decompression and errors which

may result from decoding failure, several programs were written to perform RICE

compression/decompression and convert image sequences to/from the sequence format required

by CLEAN. These are described here.

1. ricecomp

This is the same code received from Pen-Shu Yeh at Goddard Space Flight Center with

slight modifications to work with CLEAN. The code reads in an image in JPL format and

compresses it into a format defined by Pen-Shu Yeh.

2. ricedcmp

This is the same code received from Pen-Shu Yeh at Goddard Space Flight Center with

slight modifications to work with CLEAN. The code reads in an image in JPL format and

compresses it into a format defined by Pen-Shu Yeh.

3. img2seq

This program converts the Jet Propulsion Laboratory's image file format (ASCII) to the
CLEAN code data file format (packed). Both, the .img and .seq, filenames are specified by the

user on the command line. This program works for RICE-compressed or uncompressed files.

First the program reads the image header and writes it to the sequence file's header. The

program determines whether or not the file is compressed by reading character*2 chl in the

image header. Then the appropriate conversion routine is selected and executed.

4. seq2img

This program converts a sequence file to an image file in the Jet Propulsion Laboratory's

format. The sequence file must contain the proper image header data in the sequence header so

that the image file will be constructed correctly.

If chl character in the image header is 'CI' the image will be written in the compressed

image format. Ifchl is 'U0' the image file will be written in the non-compressed format. Ifehl

is neither of these, the program will end.

Portions of this code are adapted from JPL's source code.

D. Miscellaneous Program Modules

Several additional programs were developed to accommodate convolutional encoding,

cycle slips in the demodulator which can cause insertion errors and deletion errors, as well as

other programs described below.



15

1. eonvencd

This program performs convolutional encoding on a binary data sequence. The data is

read in from file with default name 'seq.dat' and the output is stored in a file with default name

'codeseq.dat'. The encoder structure information is found in parameter file 'Viterbi.prm' (see

vithard for a description of these parameters).

Executing the program causes the file 'codeseq.dat' to be created or modified. Before

running this program, sequence 'seq.dat' must exist.

There are no assumptions associated with the implementation or output of this program.

2. delete

This program simply deletes user specified soft values from a soft sequence. This process

mimics bit deletions in the channel due to receiver PLL cycle slips. This program only works

with soft decision sequences.

This program inputs the soft values to be deleted from data file with default name

'delete.dat' and applies those deletions to sequence found in file 'seq.sft'. In addition, various

statistics are output to an ASCII data file with default name 'Delete.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

Executing the program causes the 'seq.sft' file to be modified. Before running this

program, data file 'delete.dat' and sequence 'seq.sft' must exist.

3. insert

This program simply inserts user specified soft values into a soft sequence. This process

mimics bit insertions in the channel due to receiver PLL cycle slips. This program only works
with soft decision sequences.

This program inputs the soft values to be inserted into the data file with default name

'insert.dat' and inserts those into the sequence found in file 'seq.sft'. In addition, various

statistics are output to an ASCII data file with default name 'Insert.ID', where ID is a three letter

identifier for the current run which is input from file 'ID.prm'.

Executing the program causes the 'seq.sft' file to be modified. Before running this

program, data file 'insert.dat' and sequence 'seq.sft' must exist.

4. help

This program simply puts help type information to the user screen concerning the usage of

the multiple executable programs which make up the CLEAN simulator. The information shown
on the user screen is as follows:



16

*** Communication Link and Error ANalysis ***

*** (CLEAN) ***

*** A communication link simulation tool ***

*** Developed for: ***

*** NASA Goddard Space Flight Center ***

*** Developed by: ***

*** Mississippi State University ***

*** William J. Ebel, Ph.D. ***

*** Drawer EE ***

*** Mississippi State, MS 39762 ***

*** 601-325-3912 ***

*******************************************************************************

* Simulation description:

This simulation tool consists of a collection of separate executable

programs which perform various operations found in the TDRSS downliILk

receiver. The simulation is based upon sequences which are expected to occur

at the receiver threshold device output (hard or soft decision). Complex

systems can be simulated by executing the appropriate programs, corresponding

to the operations found at the receiver, in the proper order.

........................... SIMULATION EXECUTABLES ...........................

........ => EVENT GENERATORS <= ........

BinErrs: Binomial error generator

BrstErrs: Burst error generator

BstyErrs: Bursty error generator

SetErrs: User set error seq

BstySoft: Bursty Soft generator

IIDSoft: Indep. Ident. Distr. Soft

Markov: Markov Chain State generator

..... => MARKOV CHAIN PROGRAMS <= ......

MarkDown: Conv. to lower bound errors

MarkUp: Cony. to upper bound errors

MarkJoin: Estimate joint event prob

.......... • INTERLEAVERS < ...........

BlkDeint: Block deinterleaver

DeintMrk: Block Deint for M.C. States

DPCI: Error seq PCI Deinterleaver

DPCISoft: Soft seq PCI Delnterleaver

---=> ERROR CORRECTING DECODERS < .....

BlkDecod: Block, Reed-Solomon decoder

VitHard: Viterbi hard decision decode

VitMark: Viterbl decode w/ Markov est

VitSoft: Viterbi soft decision decode

.... => SYNCHRONIZATION PROGRAMS <= ....

Sync: Seq.err Sync star. gen.

SyncPb: Theoretical sync star. qen.

SyncPPN: Theoretical sync star. gen.

.......... => MISCELLANEOUS <= .........

GenHDF: Gen. Hamming Distance Fnc.

GenMap: Soft value mappinq gen.

PNseq: Pseudo-Noise sequence qen.

RawHdr: Show raw header (for debug}

Trellis: Trellis generator

.......... > NRZM UTILITIES <= .........

NRZMDec: NRZM decoder

NRZMEncd: NRZM encoder

---=> RICE COMPRESSION PROGRAMS < .....

RICEComp: RICE compression (Pen-Shu)

RICEDcmp: RICE decompression (Pen-Shu)

Imq2Seq: Image to seq.err conv.

Seq2Img: seq.err to Image conv.
........... => STATISTICS <= ...........

DeltaEst: Delta burst stat. est.

GAPEst: GAP method burst star. est.

BinGAP: Binomial theor. GAP distr.

IntvPDF: Empirical interval distr.

IntvBin: Interval distr, for bin errs

CVMBIk: CVM bin test by block

CVMSeq: Error seq CVM bin test

............ => UTILITIES _ ............

Ascii:

CompSeq:

DisplErr:

DisplSeq:

DisplSeq:

DisplSft:

DisplMrk:

EOSconv:

EOShex:

Harden:

JoinSeq:

MAdd:

MAFilt:

QuantPDF:

Queryseq:

SeqArc:

SeqTrunc:

SeqUnarc:

convert a PDF file to ascii

Compare sequences

Displ seq.err to screen

Display sequence segment

Display sequence to screen

Displ seq.sft to screen

Displ seq.mrk to screen

EOS data conversion

EOS data display in HEX

Hard threshold soft values

Join two sequences

Exclusive OR two error seq

Moving Average filter of seq

Quantize PDF

Query sequence header

EOS sequence archiver

Seq length truncator

Sequence unarchiver

5. madd

This program modulo adds two binary dam sequences. Each file name is specified by the

user throught the keyboard. Both sequence files should be in packed format. The results of the
modulo addition are stored in second file in packed format. If the two files are different lengths,

the extra length is truncated. The program also outputs the error sequence error density based on

the assumption that a ' 1' corresponds to an error.



17

Thisprogramwaswrittenwith the intentionto moduloaddthechannelinputto thechannel
outputto yield thechannelerrorsequence.Theerror sequenceis storedin file with name
SeqFileName2.

6. pnseq

This program generates a psuedo-noise (PN) sequence. The implementation used here is

that of Figure 8-6, pg. 380 of "Digital Communications and Spread Spectrum Systems" by
Ziemer and Peterson.

The input parameters (data sequence length, generator polynomial order, and random

number generator seed) are specified in a file called 'pnseq.prm'. Only orders of 7, 10 17, 20,

25, or 28 are allowed. Any orders other that these will cease program execution. The maximum

length sequence for each generator polynomial order is listed in 'pnseq.prm'.

The shift register in the PN sequence generator is initialized with random binary values.

The data sequence is stored in packed form in 'seq.dat'

7. trellis

This program generates and displays for the user the convolutional encoder trellis diagram
along with useful parameters. The program also generates a plot file which contains line

segments which will physically form the shape of the trellis.

This program was derived from the Trellis generation subroutine constructed for the

Viterbi decoding program.

The Trellis is defined via three arrays; PathCodeSym, PathLink, and PathBit. Since this

program only accommodates rate 1/2 or 1/3 encoders, only two paths enter each state at a given

trellis stage. Therefore, if there are N trellis states, then there are only 2*N possible paths

between two trellis stages. These ate sequentially numbered from 1 to 2*N where path number 1

and 2 enter state 1, path 3 and 4 enter state 2, etc. Array Path.Link(i) gives the state number from

which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path i, and

PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely

define the steady state trellis.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and outputs the trellis structure along with useful parameters to an ASCII data file with default

name 'Trellis.ID', where ID is a three letter identifier for the current run which is input from file

'ID.prm'.

The program is run by editing the parameter file 'Viterbi.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'.



18

8. genhdf

This program performs convolutional encoding of a binary sequence for a single generator

function. For now, the program will iterate through all possible generator function for a given

constraint length, and generate the "Hamming weight sequence" function, which is the Hamming

distance for all possible input sequences, for each generator function.

The method used to construct the unique input sequences is described next. Valid input

sequences are all those possible which do not have a string of K consecutive zeros in them where

K is the constraint length of the code. These sequences can be generated as follows:

1) Construct the following prefix code:

C = { 1, 01,001, 0001, ..., 0K21 }

where 0 _'2 denotes K-2 consecutive zeros. This is a prefix code because no vector in the

set can be constructed from a group of other vectors

2) Construct the first sequence as the first prefix code vector 1.

3) Construct all subsequent sequences as combinations of the prefix code vectors as follows:

a) Number the prefix code vectors as follows:

Number Prefix Code

0 1
1 01
2 001

0'1

°oo **)

K-2 0K'21

Note thatthereareK-I prefixcode numbers.

b) Now letan integercounter,j,iteratefrom 0 on up

c) Consider thej(th)integercountervalue. Suppose ithas a base K-I representation

j =j0 * (K-l) ° + jl * (K-l) I + j2 * (K-l) 2 + ...

where each coefficient is a number in the range 0,1,...,K-2. Next construct the base

K-1 number by concatenating the coefficients together:

j base 10 = [... j 2 j 1 j 0] base (K- 1)

Now construct the j(th) Generator Hamming Distance function sequence by starting

the sequence with a 1 and by concatenating the prefix code sequence for the base K-1
coefficients in the order from least significant to most significant. That is, the input

sequence is constructed by

sequence = ... 02 PC) (jl PC) (j0 PC) 1



19

wherePCstandsfor Prefix Code.

The only problem with this formulation is that it excludes input sequences of the form 1_for

integer i greater than 2. However, only input sequences up to a given length (MaxSeqLength)
are constructed. Therefore, the input sequences of the form 1i for i= 1,...,MaxSeqLength are

constructed first and placed at the beginning of the sequence. This completes the description of

how the encoder input sequences are constructed.

This program was derived from the Trellis generation program constructed for the Viterbi

decoding program.

The Trellis is defined via three arrays; PathCodeSym, PathLink, and PathBit. Since this

program only accommodates rate 1/2 or 1/3 encoders, only two paths enter each state at a given

trellis stage. Therefore, if there are N trellis states, then there are only 2*N possible paths

between two trellis stages. These are sequentially numbered from 1 to 2*N where path number 1

and 2 enter state 1, path 3 and 4 enter state 2, etc. Array PathLink(i) gives the state number from

which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path i, and

PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely

define the steady state trellis.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and outputs the trellis structure along with useful parameters to an ASCII data file with default
name 'GenHDF.ID', where ID is a three letter identifier for the current run which is input from

file 'ID.prm'.

The program is run by editing the parameter file 'Viterbi.prm' and selecting the

appropriate parameters and by choosing a program ID by editing file 'ID.prm'.



20

IIl. Periodic Convolutional lnterleaver

Recently, the issue as to whether the PCI is necessary in TDRSS has surfaced. Two

documents (presentation slides) have addressed this issue, one by Warner Miller [1] and one by

Ted Kaplan and Ted Berman [2] which give conflicting results. Below, the main points and
results of the documents are outlined and it is shown that the results are not comparable due to

the fact that the channel models used are fundamentally different.

In document [ I ], OMV test results are presented to illustrate why the PCI is not necessary
for the TRMM communications link. Bursts of a fixed length were input into the Viterbi

decoder, one at a time, both with and without the PCI present to determine the effect (number of

erred bits output by the Viterbi decoder). The main points of the document are as follows.

1) Viterbi output bursts are not extended. This is not entirely true. Ifa burst (in terms of

code symbols) of length B is input to the Viterbi decoder, then generally a burst (in BITS)

of length B+M is output where M is a number less than the memory length of the decoder

(32 for the LV7017). However, for the length of bursts considered for the OMV tests

(>50), the slight increase in burst length is not noticeable.

2) A (255,223,16) Reed-Solomon code can correct 16 code symbols or (at least) 628
consecutive bit errors. This is correct.

3) The OMV tests show that without the PCI, almost all the error bursts output by the

Viterbi decoder can be corrected. When the PCI is present, synchronization loss causes

error bursts at the Viterbi decoder output of > 1000 bits which cannot be corrected by the

RS decoder.

4) The OMV test results conflict with the CLASS analysis performed by Ted Kaplan.

In document [2], CLASS (it is assumed) is used to generate performance results which

show that the PCI is necessary. The noise environment is modeled by Poisson occurring RFI

pulses which affect 15 code symbols (30 binary symbols) at the Viterbi decoder input. The duty

cycle of the RFI is taken to be .018 and thermal noise and False Loss of Viterbi Decoder

Synchronization (FLDS) are ignored. The main points of the document, for the no PCI case, are
as follows.

1) Without the PCI, the Viterbi decoder can't correct code symbol bursts of length 15. In

fact, it is stated that the bursts at the Viterbi decoder output are longer than those at the

input. See item (1) above. It is my belief that in principle, Document [1] agrees with this

assessment.

2) With the PCI, the errors at the Viterbi decoder output are not present unless PCI

synchronization is lost. In essence, the error probability at the Viterbi decoder output
with the PCI is much less than the Viterbi decoder output without the PCI. It is my belief

that in principle, Document [ 1] agrees with this assessment.

3) Therefore, it is concluded "that there should be an even larger difference aRer RS

decoding (see Figure 1)". Figure 1 of Document [1] shows that the error probability at

the RS decoder output is much worse without the PCI. This Figure is the source of the
conflict between the OMV test results and CLASS results.



21

There are several important difference_; between the ana/yses which make comparison

impossible. These are outlined here.

1) CLASS does not incorporate synchronization into the decoder performance analysis.

This is obviously a critical issue which must be considered. Long burst lengths will occur
at the Viterbi decoder output when PCI synchronization (and less so, Viterbi node

synchronization) is lost.

2) The OMV test results only consider bursts of long length but don't consider the Poisson
occurrence time of bursts in the real channel. Previous studies have shown that the

S-band downlink is characterized by noise bursts which occur with Poisson statistics [3].

This is important because the duty cycle (taken to be 0.018 by Ted Kaplan in [1]) will
result in more than one burst per interleaved Reed-Solomon code block. A duty cycle of

0.018 with bursts of length 30 will cause an average error free guardband between bursts

of 30/0.018=1667 binary symbols. Therefore, one RS interleaved block which contains

10,200 binary symbols will result in approximately 10,200/1667=6 noise bursts. Each

noise burst causes roughly 30 binary symbol errors, equivalent to roughly 30/8=4 RS

code symbol errors. Therefore, 24 RS code symbols (24"8=192 binary symbols) will be

in error on average due to the RFI. At first, it appears that these will be corrected with no

trouble, however, because the occurrence times are Poisson for the RFI pulses, it is

possible for some RS interleaved blocks to contain many more code symbol errors. It is
unclear whether performance will be sufficient, in any case, the Poisson occurrences of

the RFI bursts cannot be ignored. It is my belief that the RS decoder will have no trouble

correcting the bursts which typically occur within one RS interleaved block. Note that
the RS decoder does not allow error propagation due to the block nature of the decoder.

The TDRS East environment is another matter, however. This environment is

characterized by an interferer with a duty cycle of 11% or so. It is unclear whether the

system, with or without the PCI, can handle this interferer.

The Communication Link and Error ANalysis (CLEAN) simulator developed by me at

MSU can help resolve the problem. Poisson occurring bursts can be generated to simulate the
"RFI in the real link and a soft Viterbi decoding program, which emulates node synchronization

exactly like the LV7017C hardware, can be applied. This work is currently in progress along

with the RICE compression work.

Preliminary results suggest that the PCI is not necessary for the TDRSS West environment.



22

Appendix

TheRICE CompressionAlgorithm: TheoryandCLEAN Implementation



23

1.0 ABSTRACT

In communication systems such as satellite data links, it is necessary to keep the

bandwidth small due to limited channel and�or transmitter complexity. One way to alleviate the

problem is to use digital data compression algorithms which reduce the number of bits

required to represent a given amount of information. The RICE compression algorithm is

frequently used in data links transmitting digital images from satellites to earth [1.5].

This paper summarizes RICE compression theory and simulation for a noiseless

environment. The RICE simulation presented is an application specific to the Voyager H

spacecraft, and is integrated into CLEAN, an existing software package. In conclusion,

questions are presented for research relating to noisy simulations.

2.0 INTRODUCTION

The goal of all data compression schemes is to take sourcc data and perform a reversible

mapping which avcragcs fewer output bitsper symbol than the source. In gcncral,the sour_

data is firstdivided intowords (symbols) of equal length and ordered in terms of decreasing

symbol probability.Then, the most probable words arc assigned codcwords which arc short

relativeto the corresponding source symbols. Similarly,the Icastprobable words am assigned

codcwords which arc long in Icngthrelativeto the source symbols. IdcaUy, the average codcword

lengthwillapproach the sourceentropy (entropyisthe minimum number of bits/symbolrequired

to rcprescntthe sourcc by using any codc).

Many compression schcmcs, such as the Shannon-Fanno codc, perform thismapping by

tablclook-up. An cxamplc of a Shannon-Fanno code [6] isshown in Tablc I. The source



24

symbols in Table 1 are 3 bits long and the average codeword length is

I-I

or 2.75 bits.

(1)

Source Symbols Probability Codeword CodewordLength

Xo .2500 00 2

X1 .2500 01 2

X2 .1250 100 3

X3 .1250 101 3

X4 .0625 1100 4

Xs .0625 1101 4

X_ .0625 1110 4

x, .0625

Table 1. Example Shannon-Fanno Code.

1111 4

The constructs of the Shannon-Fanno code are not important. The point being made here is that

the Shannon-Fanno code mapping, as well as many other code mappings, is based on a priori

table look-up. In reality, the source symbol statistics vary, so the symbol probability ordering

in Table 1 can change and data expansion can occur. Therefore "table look-up" codes fall short

when the "least probable" symbols occur too often. Thus these types of compression algorithms

only work for a certain entropy range. Figure I illustrates performance for a typical "table look-

up" code with different source entropies. Note this particular code performs best for source

entropies from 2.5-4.5 bits/symbol.



25

Average Cocleword Length (blts/esmple)
6

5

4

3

2

I'yplc81 8-F iCodo
.......... . ..... k ...............

_:ompreeelo',n Limit
I I

i I I I I

0 1 2 3 4 5 6

8ource Entropy (hits/sample)

Figure 1. Average Performance for a Typical Shannon-Fanno Code.

The RICE compression algorithm is an adaptive code that employs ideas similar to the

Shannon-Fanno code. RICE contains several different compression routines that each perform

well under a different entropy range [4,5]. Basically, the RICE algorithm reads a block of source

symbols, determines which compression routine is best suited for this block of data, encodes the

symbols, and transmits the symbols along with a few ID bits which identify the compression

routine used on this particular block. Therefore, the RICE compression algorithm can make

adjustments for varying source symbol statistics.

This paper discusses the general RICE compression theory, a RICE application, and a



26

computer simulation. Also, questions dealing with RICE decoding in a noisy environment are

presented.

3.0 THE RICE COMPRESSION ALGORITHM

Let the sequence of any symbols, x 1, x 2, .... xq._ be denoted as X={xj}. Then the entropy,

H(X), is defined as

H(X) -- -_ p110g2p_ bits�sample (2)

where Pi is the probability that x i occurs. The entropy of a data source is the theoretical limit for

how many (actually, how few) bits/symbol are required to represent it. Practically all data

sources have time-varying entropies. The biggest advantage of RICE compression is that it can

employ many types of compression algorithms, which collectively perform well over a wid_

range of entropies. The average performance plot for each RICE compression option looks lilm

Figure 1, except each option is good over a different entropy range. The term, "RICE

compression", does not imply the number or type of algorithms within it. This paper will only

cover a few of them.

3.1 PREPROCESSING

No matter which code option is used, RICE's First task is to order the symbol probabilities

for each block. This is accomplished by reversible preprocessing which usually removes

correlation from the symbols and orders them using a priori knowledge. From now on, it is



27

assumedthat the following condition is true for eachblock of samples:

t90 > p_ z P2 "' z pq_, (3)

where q is the number of symbols output from the source. Reversible preprocessing is

summarized in Figure 2. The actual preprocessing method used will depend on the application.

l_a'lm

I
I
!
I
I

I
I
I
I
I
I
L°

A Prlom Inl_o,

1
Iif_,er I:k,deP_

Figure 2. Reversible Preprocessing for RICE Compression.

Once the condition in (3) is true or well approximated, RICE can choose which

compression option is best for the current block. Let the compression options be denoted as _Ft,

where i is an identifier. The _Fl identifiers used in this paper are identical to those in [5].

One code option is an obvious, trivial case. If the source symbols happen to be completely

random, there is no need to encode them. An attempt to code them would most likely result in

data expansion. Therefore, the simplest compression option is

3 IX] -- X (4)

3.2 W_: FUNDAMENTAL SEQUENCE

The simplest, non-trivial compression option is the fundamental sequence. The



28

fundamentalsequencecodewordoperatoris definedby

fs[i] - 000...0001 (5)

where i is the magnitude of an input symbol and the output is i zeros followed by a "1"

Obviously, the length of a fundamental sequence codeword is

i_ = f<fs [i]) = i+i bits

Encoding J symbols as fundamental sequence codewords is denoted by

(6)

_ [X] = FS [X] = fs [xI] *fs [x2] *'"*fs [xj] (7)

where * implies concatenation and tI.'t is called the fundamental sequence of X. The length of

a fundamental sequence is

d J

(8)

No matter how many bits each symbol contains, _t would be powerful ff lower

magnitude symbols occurred most. This would be the case for highly-correlated data because

the symbols output from the preprocessor (de-correlator) would be low in magnitude. Image data

is a good example of this situation, since pixels on the same scan line arc highly correlated [5].

The performance plot for the fundamental sequence is contained in Figure 4. Note that FS[X]

performs well over H(X) of 1.5 to 3.0 bits/sample.

3.3 hu2 AND q'0: CFS[X] AND CI_'[X]

Let Y be a J-symbol sequence. Given a positive integer e, define the extended sequence



29

of Y to be Y concatenated with enough zeros to form a sequence whose length is a multiple of

e. The extended sequence of Y is written as

(9)
Y/ = Ext° [Y] = (YlYz'"Y,) * (Y..IY,÷2""Y2e) *"'* (Yj-IYj 00'''0)

There are [J/e] groups of e symbols in Ext_[Y], so there are e_lel symbols total in Exte[Y]

where I-J/el is the smallest integer greater than or equal to J/e.

As an example, let Y by the 29 bit sequence

Y = llOlO01101010011101101001Olll (10)

Then the 3rd extension of Y is given as

Y! = Ext. 3[Y1 = (ii0)*(i00)*(ii0)*(I01)*(001)* (11)
(ii0) *(ii0) *(lO0) *(lOl) *(ii0)

where one dummy zero was added to complete the [29/31= 10 t_ symbol of Y'.

Compression options W z and W o attempt to remove any redundancy that may remain in

the fundamental sequence. Clearly, from (5), it may be likely zeros in the fundamental sequence

are more likely than ones. Define the second compression option as

2 IX] = CFS IX] --cfs [xl] ,cfs Ix2] ,..- (12)

where cfs means code the 3 '_ extension of X mapped according to Table 2 [5]. The performance

plot for CFS[X-] is contained in Figure 4. Note that CFS[X] performs best for H(X) of 3 to 4.5

bits/sample.



3O

Input 3-tuple_ Ou_ut Codeword: cfs[_]

000 0

001 100

010 101

I00 II0

011 11100

101 11101

II0 llllO

111 11111

Table 2. 8-Word Code, cfs[a].

It is clear from Table 2 that when zeros are most likely in FS[X], compression will occur. It is

possible that ones are more likely in FS[X]. Therefore, define the next compression option to

be

¥ o[x] = ci_ [x] - cr_ [x_],cB_ [x2]*"" (xs}

where eta' comes from Table 2 with the left column complemented. The performance plot for

CI_[X] is contained in Figure 4. Note that CI_'[X] performs best for H(X) of 0 to 1.5

bits/sample.

3.4 THE BASIC COMPRESSOR

All of the RICE compression options mentioned thus far collectively perform close to

source entropies which range from 0 to 4.5 bits/sample. A block diagram for the four basic code



31

options is shown in Figure 3. Together, these code operators comprise the "basic compressor"

3
C_MP[ 3 [x% [ "1 cf_ 3

) FSI:X]"_I'1D('J

3
Ex't [ 3 cfs-I[ 3

Figure 3. Four Basic Compressor Options.

which is denoted as

qn4[X] = BC[X] : ID*_ miX] (14)

where ]]9 is a concatenated 2-bit binary number representing 0, 1, 2, or 3, the compression option

used for this sequence. Clearly, ID will be chosen such that

/'(qJzz_[X] ) = mi.n {f,(q_j [X] )}

J
(15)

Rice suggests the 119 decision rules outlined in Table [5]. The length of the basic compressor



32

would be

L(BC[X]) -_I +L(_ r_[X]) bi_s/sarnple <a.a)
J J J

where J is the number of samples. The rightmost term in (16) is assumed to be the shortest of

the code options.

Operator Decision Condition for FS[X] Length

•I'o[ ] F _<3 LJ/2J

tFt[ ] 3 LJ/2J < F < 3J

_F2[ ] 3J < F < 3(m-2J)

,I,,[ ] F > 3(m-2J)

Table 3. Basic Compressor Decision Rules_ F=FS length, J=no. samples, m--raw sequence length.

The overhead associated with the basic compressor is 2[J bits/sample, the length of the

ID bits. It appears that the overhead could be minimized by keeping I large. However, a large

block size would give the basic compressor fewer chances to choose the best code option and

the rightmost term in (16) may not be optimum. Studies by Spencer and May [7] suggest that

the best block size is 16 to 25 samples.

The performance plot for the basic compressor is shown in Figure 4. The trivial option,

_F3, has been left out of the plot. This option would be a horizontal line at q, the number of

bits/sample output from the source.



33

Average Codeword Length (blto/sample)

6

4

3

t

I
e
e
e
e

l I i

2 3 4

8ource Entropy (bits/eample)

H(X)

OI

0 1 6 6

Figure 4: Basic Compressor Performance.

3.5 _5: BLOCK-BY-BLOCK BASIC COMPRESSOR

Let Y bc aa N sample sequence of samples partitioned into TI smaller blocks such that

Y- Y1,Y2,'",Y (17)

and each Yi is composed of Ji samples. Therefore

The block-by-block Basic Compressor is the adaptive version of (14). That is, the block-



34

by-block Basic Compressor can change ID's in the middle of a sequence. DeFine the block-by-

block compressor as

tg s[Y] =qJ4 [Y_] *W 4 [I"2] ,...*tg 4 [Y_ ] (19)

3.6 I'I/ix ) LI'/II: SPLIT-SAMPLE ENCODING

There are many other compression algorithms that could be incorporated into RICE

compression. The only other algorithm covered in this paper is split-sample encoding. Split-

sample encoding recognizes when (and how many) least significant bits (LSB's) in a source

sample are random. When this is the case, these LSB's are output "as is" and the remaining

most significant bits (MSB's) axe compressed. When more LSB's arc random, the source entropy

is higher, and split-sample encoding performs better. Therefore, split-sample encoding works well

for high entropies.

Let M0* be a sequence of N preprocessed samples of n bits/sample such that (3) is

satisfied. Def'me the split-sample operator (not the encode,') as

ssg tM I= mo. } c2o)

where I_ ° is the N sample sequence consisting of k LSB's of each sample of Me", and Me '_ is

the N sample sequence consisting of the n-k MSB's of each sample of Mot The other subscript

and superscript parameters will not be used, but are retained to stay consistent with [5]. A typical

sample of this structure is illustrated in Figure 5.



35

n bl_s

_n-k bits >< k bits >

Figure 5. Typical Split-Sample Symbol.

Define the split-sample encoder as

q_ l,k[Mg] = Le0*_ t [M_o-k] 1211

where i is the compression option used to encode the MSB's, n is the number of bits/sample in

the original sequence, k is the number of LSB's, and n-k is the number of MSB's.

The decision criterion for i and k depends on the options available to the RICE

compressor. Decision criterion for several options is given in [4,5]. In this paper, only the

decision rules for i=l will be examined.

Since i=1, the only decision to make is k. Obviously, k will be chosen such that

k

Clearly,

L{_**tMg_}: L{L°}+L{__o-*_}

Let the sequence, Mo*, be represented in terms of its samples

M_ = m I * m 2• ...,m N

and leteach sample be representedin terms of binary digitsas

(23)

(24)



36

m_ = b_-12 n-J-+b_ -2

n-I

--E bJ2'
i=0

where b7 t is the MSB and bj° is the LSB. Substituting into (8), the length of the fundamental

sequence of MSB's is

(26)

Notice in (26) that the exponent on the two reflects the truncation of the k LSB's. Rice [5] shows

that when (26) is modified and substituted into (23), the length of the split-sample sequence is

where F0 is (26) with k=0. Therefore, the RICE compressor must choose k such that (27) is

minimized.

Finally, define _tt as

where k' isthe binary representationof k. Note the similaritiesbetween (27) and (14).

(28)

4.0 RICE SIMULATION

Any compression option could be used for i in (21), including the Basic Compressor.

Rice [3] has shown that i=l only provides good compression for the Voyager image entropy

range. Therefore, this simulation only incorporates _Fl_,.

CLEAN, a communications simulation package developed by Mississippi State University,



37

is capable of incorporating RICE compression into many communication system configurations.

The RICE portion of CLEAN has been adapted from existing code developed by the Jet

Propulsion Laboratory (JPL).

The image file format input to the RICE simulator is described in Figure 6. Figure 6a

ntI
Lines

2 Bytes

Ichl I nil I nbt I ntr IntYlinty21n'ty3i

cL)

32 Bytes )

oh2 I

1 plxeL

b)

Figure 6. Image File Format.

shows that the first record in the file contains image header data. The header data is defined as



38

follows:

chl:

uli:

nbl:

nbp:

nit:

nty(3):

ch2:

"UO" if image is uncompressed, "CI" if image is compressed

number of lines in the image file

number of bytes per line

number of bits per pixel

number of label record

type of image file - set to 0 0 0

user text - image title

Figure 6b describes the image portion of the image file. One record is equivalent to one scan

line. Therefore, the image file format is similar to the manner in which pixels are laid over a

monitor.

The RICE simulator processes one record at a time. Each record is broken into 16-pixel

blocks. If a record is does not contain a multiple of 16 pixels, the last block is zero-filled.

Therefore, for each scan line input to the RICE simulator, one reference pixel is output followed

by 16 concatenations of (28) where n is the number of bits/pixel. In other words, the split-

sample encoder has 16 opportunities per scan line to adjust to changing data statistics. A block

diagram of the RICE simulator is shown in Figure 7.

Pixels on the same scan line of image data are highly correlated. For example, adjacent

pixels are usually about the same color and intensity.

The purpose of the reversible preprocessing in Figure 7 is to alter the source symbols

(pixels) such that (3) is well approximated. The probability ordering in (3) is achieved by using

a priori information. In the case of a pixel, this a priori information is the previous pixel, or



39

I_ge Nolsetess Encoder

In_ge Revers :Iote Preprocess ing

I I

PPedlctlVe
Decorretatlon

r I

I I
I I
I-. I

A

PPedlctlon
Error

Integer_

I---+8
0 0
I I

3
-2 4
3 5
-3 6

* i

I
I
I
I

Encoder

i

Coded
Plxe{s

ReFerehCe
P Ixel,

|

Figure 7. Block Diagram of the RICE Simulator.

reference pixel. Tha predictive dccorrclator in Figure 7 subtracts the previous pixel from the

current pixel, yielding a difference value, A. Since adjacent pixels arc approximately equal, the

most likely values for ]A] arc close to zero. Therefore, the mapping in Figure 6 outputs integers

(8's) whose probability ordering matches the condition in (3). This mapping is outlined in

Table 3.

The 8 values are well conditioned for split-sample encoding because they are

mosdy low in magnitude. Therefore, their MSB's will contain significant redundancy and their

LSB's will be somewhat random.



4O

A Condition 8 Assignment

0 < A < previous pixel 2A

A > previous pixel pixel value

(previous pixel - maximum) < A < 0 21AI-1

maximum - pixel value(previous pixel - maximum) > A > 0

Table 3. A--->8 Mapping Rules.

Note that fin'st pixel from each scan line, the reference pixel, is sent uncoded. At the

decompressor, the reference pixel is used in conjunction with the 8 values to reconstruct the scan

line.

The compressed image file output from the RICE simulator is described in Figure 8. The

header for the compressed file is the same as Figure 6a. Clearly, each record of compressed dam

will be variable in length. Therefore, the number of bytes for each compressed scan line is stored

at the beginning of each record. The reference pixel will be used with the decoded series of 8

ni0
Lines

I nbyte_p=ck] reCePencelID]16 SS-code ptxet=i' , , liD[16 SS-code plxets I

i

, 0 '

I ID t16 SS-code plxetsI

Figure 8. Compressed Imaze File Format.



41

values to reconstruct the original scan line.

The ID bits tell the decompressor how many LSB's (k) where split from the original

pixel. Note that the ID bits say nothing about the length of the FS encoded MSB's. An example

of a split-sample encoded pixel is shown in Figure 9.

10101010L11ii0111111I01
FSEMSB's] LSB's

Figure 9. Typical Split-Sample Encoded Pixel.

As the RICE decompressor simulator reads the compressed image file from left to right,

it must have some way of knowing where the encoded MSB's begin and end and where the

LSB's begin and end. After the ID bits are read, the simulator wiU begin reading the FS encocl_

MSB's. As soon as the simulator reads a "1", it assumes that this is the end of the FS encod_

MSB's and the next k bits are the LSB's for the current & This _ de, compression is repeatod 15

more times (retmmtmr, the _'s were encoded in 16-integer blocks), then the next ID is read and

the process repeats until nbyte_pack bytes have been read in. Once all the _ values have been

decompressed, they will be used with the reference pixel to reconstruct the original scan line.

The decompressor repeats all of this until nli lines have been processed.

4.1 RICE/CLEAN INTEGRATION

Programs called img2seq and seq2img provide the interface between JPL's RICE

compression code and MSU's CLEAN code. Img2seq converts the RICE image file format to



42

the CLEAN sequence file format. Conversely, seq2img converts the CLEAN sequence file

format to the RICE image file format. Both programs work for compressed or uncompressed

formats. The image header data from record 1 of the image file is stored on records 60-100 in

the sequence f'de. The image data starts on record 101 of the sequence file.

The RICE/CLEAN integration exists to study the effects of a noisy channel on RICE

decompression. Clearly, from Figure 9, errors in the LSB's will only result in pixel distortion.

However, errors in the ID bits or FS encoded MSB's will may the decompressor to overlap the

FS encoded MSB's with the LSB's. Consequently, synchronization of the FS encoded MSB's,

LSB's, and ID bits would be lost. Block loss, or even line loss could occur. In other words,

errors in the appropriate positions would cause "error propagation" in the decoded pixels.

5.0 CONCLUSION

RICE compression performs quite well over a broad entropy range. However, the effects

of noise on the decompressor output are still relatively unknown. The following questions about

RICE need to be answered. Do errors output from inner error-correction codes cause catastrophic

errors output from the RICE decompressor? If so, and extra error-correction encoding is needed,

what is the net coding gain Will error propagation occur? If so, how is it stopped in real systems?

Does error propagation really matter? What error statistics are important: pixel distortion, block

loss, line loss, etc.?



43

6.0 BIBLIOGRAPHY

[11

[2]

[3]

[4]

[51

[6]

[71

"Universal Source Encoder for Space - USES", MRC NASA Space Engineering Research

Center Publication, pp. 1-27.

Jack Venbrux and Norley Liu, "Lossless Image Compression Chip Set", Proceedings of

Northcon, Seattle, WA, 1990, pp 145-150.

Pen-Shu Yeh, Robert Rice, Wanrer Miller, "On the Optimality of Code Options for a

Universal Noiseless Coder", JPL Publication, February 1991, pp. 1-44.

Robert Rice, "Some Practical Universal Noiseless Coding Techniques", JPL Publication,

March 1979, pp. 1-119.

Robert Rice and Jun-Ji, "Some Practical Universal Noiseless Coding Techniques, Part II",

JPL Publication, March 1983, pp. 1-56.

R.E. Ziemmer and W.H. Tranter, Principles of Communications, 3'_ Ed., Houghton Miffin

Co., 1990, pp. 696-698.

D. Spencer and C. May, "Data Compression for Earth Resource Satellites", Proceedings of

the 1972 1TC Conference, October, 1972.



44

BIBLIOGRAPHY

1. W. Miller, "TRMM Performance in RFI without the PCI," NASA Goddard, Code 738.3,

December 16, 1993.

2. T. Kaplan and T. Berman, "Performance of TRMM Communications in RFI With and
Without the PCI," Stanford Telecom, Code 531.1, December 22, 1993.

3. T.M. McKenzie, H. Choi, and W.R. Braun, "Documentation of CLASS Computer Program

for Bit Error Rate with RFI", LinCom, TR-0883-8214-2, August 1982.

4. W. Turin, PerformanCe Analysis of Digital Transmission Systems. New York: Computer

Science Press, 1990.

5. Ebel, W.J., and Ingels, F.M., "An Investigation of Error Characteristics and Coding

Performance", MSU Department of Electrical and Computer Engineering, Technical

Semi-Annual Report, December 30, 1993, NASA Grant NAG5-2006.



AppendixB

Preprintof aTechnicalpaperacceptedfor publicationin the

IEEE Transactions in Information Theory

To appear



A Directed Search Approach for Unit-Memory
Convolutional Codes 1

William J. Ebel, Member, IEEE _

Abstract - A set of heuristic algorithms to numerically search for good, binary Unit-Memory

Convolutional Codes (UMC) are presented along with a large number of new codes for 2 < k _<8

and code rate 1/4 _<R < I. Combinatorial optimization is used which involves selecting and then

pairwise matching column vectors of the two (n,k) UMC tap weight matrices. The column

selection problem is that of finding the best (2n,k) binary, linear Block Code (BC). In this

paper, the best BC generator matrix G is found by successively refining G using directed local

exhaustive searches. In particular, the set of minimum weight codewords are used to find a

subset of G to exhaustively search. The UMC search strategy (pairwise matching problem) uses

a directed local exhaustive search similar to the BC directed search by using the concept of the

terminated BC of the UMC. The heuristic algorithms developed in this paper are very robust and

converge relatively quickly to the optimal or near optimal UMC. In addition, although it is

generally possible to achieve the block code upper bound for free distance, we give a class of

UMC's which cannot achieve this bound.

Index Terms - Binary block code, binary unit-memory convolutional code, extended row

distance, combinatorial optimization.

I. INTRODUCTION

Many conventional communication systems employ rate l/n convolutional codes. These

codes have a high performance/complexity ratio which make them well suited for practical

applications. These codes can be implemented with Viterbi decoders that have only 2S paths

traversing a single trellis stage, where Sis the number of decoder states. As an alternative, we

consider the class of Unit-Memory Convolutional codes (UMC). A UMC has a fully connected

I This work was supported in part by the NASA Goddard Space Flight Center under Contract NAG5-2006.

2 The author is with the Department of Electrical and Computer Engineering, Mississippi State University, Box
9571, Mississippi State, MS 39762.



decodertrellis which requiresa higherimplementationcomplexity thana rate 1/n codefor the

samenumberof decoderstates.However,thebestUMC generallyhasbetterdistanceproperties.

In thispaper,we are concerned with finding the best (n ,k) UMC's for 2 < k < 8 and code rate 1/4

<R<I.

The Combinatorial Optimization (CO) search technique introduced by Said and Palazzo [1]

involves selecting column vectors (columns selection problem) and then pairwise matching the

column vectors (columns matching problem) to form the two tap weight matrices of an (n,k)

binary Unit-Memory Code (UMC). The cohmms selection problem is essentially that of finding

the best (2n,k) binary, linear Block Code (BC). Said and Palazzo approached this using cohmm

vector substitutions and an objective function which adds a penalty for every codeword with

Hamming weight less than the target dmi,. The columns matching problem requires matching the

columns of the best BC to achieve a UMC with good distance properties. They also approached

this using an objective function based on the extended row distance and randomly swapped

columns until the objective function was optimized. In this paper, the CO technique is also used,

however the algorithms have been designed to direct the search to improve efficiency and result

in more optimal codes.

Other UMC's have been found using different memory structures and different optimizing

criteria. Justesen et. al. [6] found a set of UMC's with tap weight matrices composed of cireulant

submatrices using the free distance and the extended row distance as the optimizing criteria.

Mooser [8] found many Periodically time-varying convolutional codes (PTVC), Lauer [4] and

others [7] have found good Partial Unit-Memory Codes (PUMC). Multi-Memory Codes (MMC)

have also been extensively studied [9,10,12]. It can be shown that the UMC is a superset of the

PUMC, PTVC, and MMC [3,8].

In Section II to follow, the directed BC search algorithm is described, and in Section III, the

directed UMC search algorithm is described. New Unit-Memory Convolutional codes are

presented in Section IV and the conclusions follow in Section V.



II. DIRECTEDBLOCK CODESEARCH

A (2n, k) block code (BC) is defined by the relation

y =xG

where G is the k x 2n generator matrix. The algorithm to be presented begins with an initial

matrix G and then successively refines G until the best BC is found. Since the algorithm does

not always operate on the best found generator matrix, let G denote the generator matrix being

refined and let G" denote the best found generator matrix. The set of codewords for generator

matrix G is denoted C, the Hamming weight distribution is denoted W (W, represents the number

of codewords with weight i), and the minimum distance is d,,_, which is subsequently denoted 8.

Similarly, C °, W', and 8" are associated with the generator matrix G'.

We consider a BC optimal if 8 is a maximum, the number of non-zero minimum weight

codewords W6 is a minimum, and if the weight distribution is optimal. By optimal weight

distribution, we mean one which has maximum partial second order moment defined by

6+w-I

M. = Z (i-8)
i=5+1

where w is the weight window width. Following the convention established above, M_ denotes

the partial second order moment of W'. Since Mw is not a function of Ws+w + i through W2,, this

definition leaves open the possibility for multiple "optimal" weight distributions. However, the

best found (2n,k) BC will subsequently be used to construct an (n,k) UMC. Since it is unclear

what effect the weight distribution from W8 +, + i through W2n may have on the optimality of the

best UMC, all BC's with the same & Ws, andMw are considered equally optimal.

The motivation for requiring maximum 8 and minimum W8 is due to the fact that the best

(n,k) UMC constructed from a (2n,k) BC will generally have a free distance of 8 and a number

of free distance paths equal to W_. This is discussed in Section III below. The motivation for

defining the partial second order moment is twofold. First, we have observed that many



different weight distributions for a (2n,k) BC have identical full second order moment M2,-8,

and therefore the full moment does not provide sufficient "sensitivity" during the refinement

process. Second, by maximizing Mw, the refinement process is biased to select a weight

distribution with the bulk of the weight grouped near 8 + w. Many weight distributions exhibit

peaks for weights slightly greater than 8. For example, the best (12,5) BC has a weight

distribution I4: = [1, 0, 0, 0, 1, 8, 12, 8, 1, 0, 0, 0, 1]. In this case, choosing w = 3 biases the

refinement process to settle on a code with this distribution.

The main algorithm for successively refining G alternates between two algorithms called

the Row Iteration Algorithm denoted A, and the Column Iteration Algorithm denoted Ac. We use

At(G) to mean that algorithm A_ is performed with G as the initial BC and we denote the set of

parameters to be optimized by O(G)= {8,/4"_,Mw}. Furthermore, O(G')> O(G) refers to the

notion that G" is better than G. That is, we say that G" is better than G if the first criterion, in

order of priority, which is different between G" and G is bettered by G'. With these definitions,

the main algorithrn is given by:

1) Randomly choose G. G" _ G.

2) G _---A,(G). IfO(G) > O(G'), then G" _-- G.

3) G _---Ac(G,M_). If O(G) > O(G'), then G" _-- G.

4) If not done, go to Step 2.

At Step 4, the algorithm terminates if no better BC has been found after NA cycles through the

main loop (Steps 2 and 3).

A. Row Iteration Algorithm

The row iteration algorithm requires that a set B of binary elements of G be selected and

then exhaustively modified in order to refine G. As described above, a refinement takes place

when O(G) > O(G'), where G ° represents the best found generator matrix in this algorithm. The

set B is chosen by a voting method based upon those codewords which have weight near B.



Let X be the set of input vectors defined by

X= {x : 5<w(xG)<_8+w- l}

where w(x G) denotes the Hamming weight of codeword xG. There are

5+w-I

Err,

total vectors in X. Consider the input vector xeA" which gives rise to the codeword xG. The

element g_j of Greceives a vote if both, xhas a 1 in the :h component andxG has a zero in thep

component. This vote simply means that complementing go will change the weight of codeword

x G. After all the votes have been cast for the vectors in X, the set B is chosen to be the NB

elements of G which received the most votes. Modifying this subset of G is more likely to alter

the weight distribution (W8 through W_+w__) than an arbitrary set. We conjecture that an optimal

BC is one with uniform (or nearly so) votes for the elements of G, and any transformation of G,

inB.

For example, we searched for the best (12, 4) BC using w = 2 and Na = 8. The maximum

achievable minimum distance is 6. During the search, a suboptimal code with dm_ = 5 and

weight distribution W= [1, 0, 0, 0, 0, 5, 5, 2, 1, 1, 1, 0, 0] was found. The generator matrix G for

this code had the following vote count for each corresponding element:

4 3 2 2 4 3 3 2 3 3 3 3]

2 2 1 2 2 1 1 1 2 2 2

2 2 1 0 2 3 3 1 2 2 2

2 1 1 1 2 1 1 0 2 0 2

At the completion of the algorithm, the optimal code with dmt n = 6 and weight distribution W =

[1, 0, 0, 0, 0, 0, 12, 0, 3, 0, 0, 0, 0] was achieved. The generator matrix vote count was found to

be:



[!303,3,,434!]4 3 3 3 4 0 3 3 4 3

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4

This is more uniform than the suboptimal one. We note that the elements with zero vote counts

was a common occurrence in our search experience. Most codes had between one and four zero

vote counts, even when the rest of the vote counts were somewhat uniform.

As a final note, before this algorithm was to be performed, a number of random

transformations were applied to the input generator matrix G. A transformation preserves the

weight distribution but generally gives rise to a different maximum vote count for the set of

elements of G. The transformed generator matrix with the largest maximum vote count was

chosen for the refinement procedure.

B. Column Iteration Algorithm

The colunm iteration algorithm involves exhaustively modifying each column, in order of

priority, of G in order to refine G. The column priority is assigned by accumulating the vote

counts of G for each column. If the dimension of the code is k, then there are 2_- 1 possible

ways to modify a given column. Once a column has been exhaustively modified, the next

column in order of priority (ties resolved randomly) is exhaustively modified. When all the

columns have been modified, the algorithm starts over with the highest priority column again

until Nc columns have been modified. As above, a refinement takes place when O(G) > O(G'),

where G" represents the best found generator matrix in this algorithm.

Since the solution space is not convex [1], it is possible for a local minimum to be reached.

To allow the algorithm to "back out" of local minima, an additional criterion involving the partial

moment is added. That is, we consider O(G) > O(G °) if the partial moment Mw is within a factor

0 < Ku -< 1 of the best BC partial moment M,_.



weight matrices F0 and F_.

(called a code symbol) by

III. DIRECTED UNIT-MEMORY CODE SEARCH

An (n,k) Unit-Memory Convolutional Code (UMC) is described by the k x n binary tap

These matrices relate the encoder input vector and output vector

y, = x, Fo+ x, _, F,

where x; is the i 'h, k-dimensional binary input vector, Yi is the i 'h, n-dimensional binary output

vector, and where all operations are in GF(2). Let the _-dimensional vector si denote the state of

the encoder for the i 'A input, where la is called the state complexi_ [3,4]. If FI is not full rank,

then la < k and the UMC is called a Partial Unit-Memory Code (PUMC) [4]. We will assume

that FI is full rank so that la = k and si = x__ 1. Furthermore, we assume that xi = 0 for i < 0 and

So =0.

The tap weight matrices also define a BC. Observe that the input sequence x_ = Xo, O, ...

gives the output sequence y; = Xo Fo, XoFI, O, -'- and can be written

[Y0 Y,] = [xoF0 xoFI] = X0 [/70 F,]

This also defines a BC and provides a relationship between the (2n,k) BC G = [F0 F_] and the

(n, k) UMC with tap weight matrices F0 and F,. For the BC G, let 15be the minimum distance,

Wj be the weight distribution, and let ds,,, be the free distance of the UMC. Since the paths given

by the codewords of G are valid paths on the UMC decoder trellis, we must have all,,., _<t5. This

is called the block code upper bound on free distance [3]. Brouwer and Verhoeff [5] have

tabulated the tightest known bounds on 15for every binary BC with n and k ranging from 1 to

127.

There are a set of UMC's which cannot achieve the block code upper bound. First, it is

easy to show that any (2n,k) BC which contains the all ones codeword must give rise to a

catastrophic (n,k) UMC. Now consider the first order (2'-1,k) Reed-Muller code with generator

matrix



where G'k _ f

weight distribution is

l
is a (k- 1)x (2 k-_) matrix consisting of all possible 2 k-_ column vectors. The

I 1, j=O,j=nWj= 2k-2, j=n/2

[ O, else

(l)

which achieves the d.,. upper bound. However, no other (2 k- _,k) BC will achieve the d,_. upper

bound. Modifying any of the non-zero columns of G',_ t must necessarily result in a decrease in

d,.;.. Similarly, modifying the zero column of G'k_ _ or the first row must also necessarily result

in a decrease in dm_.

Theorem I: Any (2 k-2,k) UMC cannot achieve the block code upper bound.

Proof Since every (2k-_,k) BC with maximum d,_. has a weight distribution which

includes the all ones codeword, the resulting UMC must be catastrophic.

Thommesen and Justesen have shown [2] that it is possible to extend the connection

between a UMC and a BC. The BC with generator matrix

0
G,=IO Fo Fj ".

'Lo ::::::;i ;i
is called thej 'h terminated BC of the UMC, wherej denotes the number of row block matrices,

and the minimum distance is called the j" row distance dr. To minimize the decoded

error-probability, it is necessary to maximize the row distances d; for j >_ 1. Indeed, since the

maximum value for d_" is _5(i.e. G_"= [Fo F,]) and since d7 must be a non-increasing function of

j, the maximum possible row distances are

d; = _5, j>l



which occur when the block code upper bound is achieved.

Consider a subset of the codewords generated by Gf. If lj is the set of input sequences

where x; _ 0 for i <j and x; = 0 for i >j, then the extended row distance is defined by

d_ = min {w(xGf)}.
x al1

This represents the minimum weight of those codewords which start at the all zero state and

return for the first time at the (/" + l) th trellis stage. Therefore, the BC defined by G7 on the set of

input sequences/j has minimum distance d_. The free distance is given by

dy,,, = min (d_).
J

Clearly, d_ > df which gives dr,,, = d_ >_8 forj > 1 when the block code upper bound is achieved.

Since d_ is the minimum distance for the BC defined by Gf on the set of input sequences/j,

the columns matching problem can be approached in a manner similar to the columns selection

problem which was described in the previous section. In this paper, we optimize the second

terminated BC defined by

on the set of input sequences 12 and with minimum distance d_. The directed local exhaustive

search is in the form of column permutations and the chosen optimizing criteria is a superset of

those used in the row and column iteration algorithms. Column permutations have no effect on

the weight distribution of G[.

The algorithm presented below begins with an initial matrix G = [F0 FI] and then

successively refines G with column permutations until the best UMC is found. The subsequent

development follows closely with that given in Section II above. Let G denote the UMC being

refined and let G" denote the best found UMC. The./'h terminated code is given by Gf. and (Gf)"



for G and G', respectively. The set of codewords for generator matrix G; on the set of input

vectors I s is denoted Cs, the weight distribution is denoted Ws (/'Vs.,. represents the i 'h weight value

for the j,h terminated BC), and the minimum distance is dsr which is subsequently denoted 5s.

Similarly, C;, W;, and _5_are associated with the matrix (G_)'.

In this paper, the UMC optimizing criteria, in order of priority, are chosen to be; (1)

maximum d#,e, (2) minimum number of free distance paths N#e,, (3) maximum 52, (4) minimum

W2._, (5) maximum 53, (6) minimum W3._, (7) maximum partial second order moment of W2

which is denoted M2.w, (8) maximum 513for some 13>>1, (9) and minimum W_.s_, where 13is an

arbitrary, preselected index. The number of free distance paths is

6j:d1_,

Criteria (1) through (7) optimize G_" through G_'. We have observed that maximizing M2.w

promotes the selection of a UMC with a rapidly growing distance profile. Finally, criteria (8)

and (9) are included to promote the elimination of a catastrophic code. Again, we use

O(G') > O(G) to denote the notion that/G" is better than G using these prioritized criteria.

The Viterbi decoding algorithm is used to determine the extended row distances _is which

gives _52,153,_51_,and d/,,,. As long as d_ = d/,,, occurs forj < 13, it is only necessary to generate d_

for 1 _<j ___13. By counting the number of paths which achieve _5s for each j gives Nf,,,, W2.h,

W3.8,, and W_.rp. The second order partial moment M2.w is found by constructing the weight

distribution W2 from G_ on the set of input sequences/2.

The main algorithm for successively refining

algorithms called the Column Permutation Algorithm A e

is given by:

1) Input G (from the BC search algorithm in Section II).

G _-- Ae(G). IfO(G) > O(G'), then G" _-- G.2)

G =[F0 F_] alternates between two

and the Column Swap Algorithm A, and



3) G _--A,(G,M_w). IfO(G)>O(G°),thenG'_-G.

4) If not done, go to Step 2.

At Step 4, the algorithm terminates if no better UMC has been found after some number of

cycles through the main loop (Steps 2 and 3). The tap weight matrices for the final UMC are

[F0 F_] = G'.

A. Column Permutation Algorithm

The cohunn permutation algorithm Ae(G ) requires that a set of columns be identified and

then systematically permuted (local exhaustive search) to refine G. Let x2. 8 be the set of input

vectors which result in minimum weight codewords for G_'. That is,

x2. ={x:x .12,

We definec2.6to be the setof minimum weight codewords in G_ and c;for I_<i< 3n to be the

number of codewords in c2.6which containa binaryzero ha the i'_column. Changes in those

columns which correspond to largevaluesof ciare more likelytoalterthe weight distributionof

G_ and thereforethe columns to be selected should come from thisset. To localizethe

permutationsearch,however, pairsof columns areselectedso thatifcolumn i<__n ischosen then

column i+ n isalsochosen. Operating on Dc column pairscan only change _52by De.

To selecta usefulsetof column pairs,c,isfoldedtogive

c't=c_+c_+, +c_+2_ , O<i<n .

The function c'; gives a measure of how likely the column pair (i, i + n) will change the weight

distribution of G_. Therefore, the chosen set of Dc column pairs correspond to the largest c',.

values with ties resolved randomly. The Column Permutation Algorithm simply involves

determining the set of column pairs via c';, exhaustively permuting those column pairs, and

retaining the UMC with the best optimizing criteria O(G).



B. ColumnSwapAlgorithm

This algorithm is similar to the column permutation algorithm. However, the permutation

method is an exhaustive procedure where each trial involves swapping two columns of G. For n

columns, this requires n (n - 1)/2 swaps for one complete permutation set. As with the column

iteration algorithm, the solution space is not convex and therefore it is possible for a local

minimum to be reached. To allow the algorithm to "back out" of local minima, an additional

criterion involving the partial moment is added. That is, we consider O(G) > O(G') if the partial

moment M2.w is within a factor 0 < Ku < 1 of the best partial moment M;.w.

IV. NEW UNIT-MEMORY CODES

The algorithms described in the previous sections were used to search for the best UMC's

with 2 _<k_<8 and with code rate I/4<R < 1. In searching for the best (2n,k) BC, the

algorithms described in Section II generally used w = 3, 12 <_NB -<20, and Ku =0.7. In

searching for the best (n, k) UMC, the algorithms in Section III used w = 3, 13= 10, and Ku = 0.7.

Table I provides a list of parameters for the currently best known UMC's. The minimum

weight and number of minimum weight codewords for the (2n,k) BC with G = IF0 Ft] is given

along with the block code upper bound [5]. Also shown are the free distance, number of free

distance paths, the extended row distance d, for 1 -< r <_5, and the corresponding number of paths

W,._,. The corresponding tap weight matrices are given in Table II, where each tap weight matrix

column is represented by a basel0 number as shown.

A total of 105 UMC's are presented in Table II, most of which are new except for the

following. Said and Palazzo [1] previously found the (10,7), (13,7), (11,8), and (24,8) UMC's

shown in the table, and Palazzo [12] found the (3,2), (4,2), (6,2), and (4,3) UMC's using a

network flow approach. Also, Dettmar and Shavgulidze found the (7,3) UMC [7]. Concerning

the (8, 7) UMC, our algorithms could only find a dire, = 4 code. The one given in the table was

brought to our attention by O. Ytrehus [11]. Finally, although all our codes are better than the

Quasi-Cyclic UMC's found by Justesen et. al. [6] based upon our criteria, a few of the

Quasi-Cyclic UMC's have faster rising extended row distance function.



The large number of discovered codes which achieve the block code upper bound attest to

the robustness of the directed search algorithms. In most cases, the (n,k) UMC which was found

from the best (2n, k) BC not only achieved dir,, = d,,i, but also achieved Nir,, equal to the number

of BC minimum weight codewords. The most noteworthy exceptions are the high rate codes

which either do not attain the upper bound, or have a number of free distance paths which exceed

the number of minimum weight codewords. The codes which do not attain the upper bound are

the (7,6), (8,7), (9,7), (9,8), and (10,8) codes.

Concerning the (15,6) UMC, we could not find a dm_ = 14 (30,6) BC without the all ones

codeword. We suspect that one does not exist. Therefore, we found the best dl,.,., = 13 (15,6)

UMC. Also shown in the table are the modified upper bounds for the set of (2 k- t,k) UMC's via

Theorem 1 and the upper bound for the (3,2) code which can be shown to be 3 via exhaustive

search. In some cases, the BC which achieves the maximum dm_ was not found. These are the

(46,7), (50,8), (52,8), (58,8), and (64,8) BC's. We present these UMC's as the best which have

been found to date but note that more optimal ones almost surely exist.

As a final note, a 66MHz Pentium-based PC was used to search for the codes. The BC

search required between 5 minutes and an hour to converge, and the UMC search required

between 5 minutes to (approximately) 24 hours to converge. The exponential growth in required

computer time inhibited the search for codes larger than those presented in this paper.

V. SUMMARY AND CONCLUSIONS

In this paper, algorithms have been described which use combinatorial optimization and

directed local exhaustive searches to find the best known Unit-Memory Convolutional (UMC)

codes. A total of 105 UMC's are presented most of which are better than previously known

codes. In addition, a class of UMC's are given which cannot achieve the block code upper

bound.



author's attentionby the reviewers.

helpful commentsandsuggestions.

[l]

[2]

ACKNOWLEDGEMENTS

Several of the codes listed in the table had already been published and were brought to the

The author thanks the reviewers for this and for other

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

A. Said, and R. Palazzo Jr., "Using Combinatorial Optimization to Design Good

Unit-Memory Convolutional Codes", IEEE Transactions on Information Theory, Vol. 39,

No. 3, May 1993, pp. 1100-1108.

C. Thommesen, and J. Justesen, "Bounds on Distances and Error Exponents of Unit

Memory Codes", IEEE Transactions on Information Theo_, Vol. IT-29, No. 5,

September 1983, pp. 637-649.

L. Lee, "Short Unit-Memory Byte-Oriented Binary Convolutional Codes Having

Maximal Free Distance", IEEE Transactions on Information Theory, Vol. 22, May 1976,

pp. 349-359.

G.S. Lauer, "Some Optimal Partial-Unit-Memory Codes", IEEE Transactions on

Information Theory, Vol. 25, No. 2, March 1979, pp. 240-243.

A.E. Brouwer and T. Verhoeff, "An Updated Table of Minimum-Distance Bounds for

Binary Linear Codes", IEEE Transactions on Information Theory, Vol. IT-39, No. 2,

March 1993, pp. 662-677.

J. Justesen, E. Paaske, M. Ballan, "Quasi-Cyclic Unit Memory Convolutional Codes",

IEEE Transactions on Information Theory, Voi. IT-36, No. 3, May 1990.

U. Dettmar, and S.A. Shavgulidze, "New Optimal Partial Unit Memory Codes",

Electronics Letters, Vol. 28, No. 18, August 27 1992, pp. 1748-1749.

M. Mooser, "Some Periodic Convolutional Codes Better than any Fixed Code", IEEE

Transactions on Information Theory, Vol. IT-29, No. 5, September 1983.

P.J. Lee, ''New Short Constraint Length, Rate 1/N Convolutional Codes Which Minimize

the Required SNR for Given Desired Bit Error Rates", IEEE Transactions on

Communications, Vol. COM-33, No. 2, February 1985, pp. 171-177.

R. Johatmesson, and E. Paaske, "Further Results on Binary Convolutional Codes with an

Optirmtm Distance Profile", IEEE Transactions on Information Theory, Voi. IT-24, No.

2, March 1978, pp. 264-268.

O. Ytrehus, private communication.

R. Palazzo Jr., "A Network Flow Approach to Convolutional Codes", IEEE Transactions

on Communications, Vol. 43, No. 2/3/4, February/March/April 1995, pp. 1429-1440.



William d. Ebel [M'87] was born in St. Louis MO on August 25, 1962. He received the BSEE,

MSEE, and Ph.D. degrees in Electrical Engineering from the University of Missouri-Rolla in

1983, 1985, and 1991, respectively.

From 1985 to 1991, he was a senior research engineer with McDonnell Douglas

Corporation, McAir division studying issues related to Infrared Search and Track Systems.

Since 1991 he has been with the Department of Electrical and Computer Engineering,

Mississippi State University, as an assistant professor. Currently, he is involved with NASA

studying various coding and synchronization issues related to the Tracking and Data Relay

Satellite System (TDRSS). His current research interests include satellite communications, error

correcting codes, and system simulation. He is a member of Eta Kappa Nu, Tau Beta Pi, and

ASEE.

This work was supported in part by the NASA Goddard Space Flight Center under Contract

NAG5-2006.

The author is with the Department of Electrical and Computer Engineering, Mississippi

State University, MS 39762 USA.



Table I. Comprehensive list of the best known Unit-Memory Convolutional (UMC) Codes for
2 _<k < 8 and code rate 1/4 < R < 1.

[H0 //i] BC UMC d, W,._

n k UB d._ N_.,, d:,,, N:,,_ 1 2 3 4 5 1 2 3 4 5
3 2 3 o_ 312) I 3 I 3 4 4 5 5 I 2 I 4 I

4 2 5 512_ 2 5 2 5 6 7 g 9 2 3 4 5 6

5 2 6 6 I 6 I 6 8 9 10 1l 1 4 4 5 6

6 2 8 8 _z) 3 8 3 8 10 12 14 16 3 6 12 24 48

7 2 _ 9 2 9 2 9 11 12 15 17 2 2 1 2 2

8 2 I0 I0 I I0 I I0 13 16 19 22 I 2 3 4 5

4 3 4 4 _z) 3 4 I0 4 4 4 4 5 3 4 2 I 5

5 3 5 5 3 5 5 5 5 6 7 8 3 2 4 lO 20

6 3 6 6 2 6 2 6 7 8 9 11 2 1 I I 17

7 3 8 8 °) 7 8 7 8 10 12 14 16 7 21 63 189 567

8 3 8 8 I 8 1 8 II 12 14 15 1 II 2 8 2

9 3 10 I0 6 10 6 I0 12 14 16 20 6 6 4 2 63

I0 3 I[ II 4 II 4 II 14 16 19 22 4 I0 I I 2

It 3 12 12 3 12 3 12 16 19 22 25 3 15 13 19 26

12 3 13 13 3 13 3 13 17 20 23 27 3 4 3 2 8

5 4 4 4 3 4 9 4 4 4 5 5 3 4 2 18 8

6 4 6 6 12 6 46 6 6 6 6 g 12 23 I0 1 84

7 4 7 7 g 7 19 7 7 7 8 9 8 10 1 I 1

8 4 8 8 7 8 7 8 9 10 12 13 7 20 9 54 25

9 4 8 8 l 8 I 8 I0 I1 12 13 I 4 2 I 1

I0 4 I0 10 10 10 10 10 12 12 14 16 10 19 1 I I

II 4 II il 7 11 7 11 13 16 i$ 20 7 4 22 5 $

12 4 12 12 6 12 6 12 15 17 20 23 6 16 3 I0 15

13 4 13 13 6 13 6 13 16 19 23 26 6 1 I 8 5

14 4 14 14 4 14 4 14 18 21 25 29 4 5 2 6 6

15 4 16 16 15 16 15 16 20 24 28 32 15 20 26 33 43

16 4 16 16 3 16 3 16 21 25 30 34 3 6 2 5 2

6 5 4 4 2 4 8 4 4 4 $ 4 2 4 I 26 !

7 5 6 6 15 6 5g 6 6 6 6 g 15 31 i0 2 163

g 5 7 _ 7 7 7 20 7 7 7 8 9 7 II 2 3 6

9 5 8 8 6 8 9 8 g 9 10 I1 6 3 2 2 2

I0 5 9 9 8 9 8 9 10 11 12 13 8 21 12 10 1

II 5 I0 10 6 I0 6 10 11 13 14 16 6 7 I1 I $

12 5 12 12 28 12 32 12 12 14 16 18 28 4 6 6 6

13 5 12 12 4 12 4 12 14 15 18 19 4 9 I 6 I

14 5 14 14 24 14 24 14 16 18 20 22 24 57 27 I0 5

15 5 15 15 16 15 16 15 16 19 21 25 16 2 7 I 2

16 5 16 16 15 16 15 16 18 21 24 28 15 10 5 I 3

17 5 16 16 3 16 3 16 20 23 26 29 3 21 8 3 I

18 5 17 17 5 17 5 17 21 24 29 33 5 4 2 4 4

19 5 18 18 4 18 4 18 23 27 31 35 4 21 4 4 2

20 5 20 20 26 20 26 20 24 28 32 38 26 II 3 I 8

7 6 5 5 I0 4 °j 6 5 4 4 5 5 I0 3 3 29 15

g 6 6 6 9 6 47 6 6 6 6 7 9 26 10 2 13

9 6 8 g 45 8 307 8 8 8 8 8 45 140 95 24 3

I0 6 8 8 7 8 12 8 8 8 I0 I0 7 4 I 4 1

11 6 9 9 9 9 9 9 10 I0 12 12 9 26 2 8 1

12 6 10 10 7 10 7 10 11 12 13 15 7 13 10 2 5

13 6 12 12 45 12 53 12 12 14 14 18 45 8 18 I 34



[4 6 12 12 6 12 6 12 14 15 18 20 6 30 I 15 12

15 6 14 13 _j 3 13 3 13 15 16 19 20 3 II 2 4 I

16 6 15 _) 15 15 15 15 15 16 18 21 22 15 9 4 2 |

17 6 16 16 44 16 44 16 18 20 22 24 44 32 6 I l

18 6 16 16 2 16 2 16 19 22 26 30 2 9 7 I 7

19 6 Ig 18 30 18 30 18 20 24 28 32 30 6 14 17 lg

20 6 18 18 2 18 2 18 21 23 29 33 2 5 2 4 2

21 6 20 20 45 20 45 20 22 26 30 36 45 3 6 3 12

22 6 21 21 22 21 22 21 24 2g 33 38 22 2 3 I 2

23 6 22 22 15 22 15 22 23 30 36 40 15 l ! II I

24 6 24 24 60 24 60 24 26 32 38 44 60 I 6 13 Ig

g 7 6 5 _ II 5 119 5 5 5 5 5 I! 31 33 18 17

9 7 7 7 33 6 '_) 45 7 6 6 6 6 33 28 10 6 I

I0 7 8 8 (n 54 8 337 8 8 8 8 8 54 135 103 39 6

II 7 8 8 5 8 12 8 8 9 9 9 5 7 17 3 2

12 7 [0 lO 48 I0 106 I0 I0 I0 12 12 48 51 7 32 4

13 7 II II _ 37 i[ 66 II II II 12 14 37 28 | I 2

14 7 12 12 28 12 48 12 12 13 15 16 28 20 II I0 2

15 7 12 12 4 12 4 12 13 14 15 17 4 4 6 2 I

16 7 14 14 54 14 58 14 14 16 18 20 54 4 16 8 2

17 7 15 15 36 15 36 15 16 16 19 22 36 2! I 2 2

18 7 16 16 37 16 37 16 I7 19 2l 24 37 9 6 l 2

19 7 16 16 5 16 5 16 18 2[ 24 26 5 4 14 5 2

20 7 18 18 54 Ig 54 Ig 20 22 26 30 54 33 7 g I0

21 7 19 19 35 19 35 19 21 24 26 31 35 12 8 2 2

22 7 20 20 38 20 38 20 22 23 29 33 38 7 I I I

23 7 21 20 _) 3 20 3 20 24 25 30 34 3 26 I 2 I

24 7 22 22 54 22 54 22 26 26 32 38 54 I13 I 2 4

25 7 24 24 lOg 24 lOg 24 26 30 36 42 lOg 5 3 8 II

26 7 24 24 35 24 35 24 2g 31 36 43 35 22 I I 3

27 7 24 24 5 24 5 24 29 33 3g 43 5 19 3 3 I

28 7 26 26 52 26 52 26 32 34 42 48 52 127 I 4 I

q 8 6 6 29 4 (_) 5 6 4 4 4 5 29 1 2 2 24

I0 8 8 8 130 6 °) 68 8 6 6 6 6 130 43 15 8 2

II 8 8 8 _ 50 8 325 8 8 8 8 8 50 159 89 23 4

12 g g 8 i g II 8 8 8 9 10 1 8 2 3 5 •

13 g 10 10 55 I0 139 10 10 10 10 |2 55 73 10 1 $

14 8 11 I1 36 II 55 II II II 12 14 36 17 2 1 5

15 8 12 12 59 12 98 12 12 14 14 16 59 39 125 8 10

16 8 13 13 38 13 48 13 13 14 15 16 38 |0 5 1 I

17 g 14 14 2g 14 36 14 14 15 15 19 28 8 3 I 3

18 8 16 |6 153 16 219 16 16 18 20 22 153 66 46 10 2

19 8 16 16 54 16 56 16 16 18 18 22 54 2 2 1 2

20 g 16-17 16 6 16 6 16 18 20 23 25 6 23 4 3 1

21 8 |$ 18 80 lg 80 18 20 20 24 28 80 79 2 2 2

22 $ [9 19 52 19 52 19 21 21 23 28 52 38 1 ! 3

23 8 20 20 I01 20 101 20 22 24 28 32 I01 25 I 1 l

24 g 22 22 (n 144 22 146 22 22 26 30 34 144 2 9 I 1

25 8 23 22 _) 83 22 g3 22 24 28 30 36 83 11 19 3 7

26 8 24 23 (_ 56 23 56 23 25 29 32 39 56 I 2 I 3

27 8 24 24 62 24 62 24 27 30 36 41 62 18 4 4 3

28 8 24-25 24 46 24 46 24 2g 30 38 44 46 II I 6 7

29 8 26 25 _ 10 25 10 25 29 34 39 46 l0 7 6 I 2

30 8 26-28 26 40 26 40 26 32 34 40 48 40 t44 t 2 8

31 g 28 28 118 28 118 28 32 36 42 50 118 38 3 i 1

32 8 29-30 28 _) 37 28 37 28 32 38 46 52 37 2 I [2 2

Via exhaustive _arch. upper bound is reduced to 3.

See Reference | 12].
See Reference |7].

Block code upper bound reduced by one due to Theorem [.

d/_ < d.,. of the [He H,] BC.

Algorithms l_.iled to find a d.j. = 14, (30.6) BC without the all ones codeword.

See Reference [1].

Upper bound not achieved for the [�In H, I BC [5].

See Reference [1 I].



Table II. Tap weight matrices for the best known Unit-Memory Convolutional (UMC) Codes for
2 < k < 8 and code rate 1/4 < R < 1.

n k Ho/ H1
3 2

4 2

5 2

6 2

7 2

$ 2

4 3

5 3

6 3

7 3

D 3

9 3

10 3

11 3

12 3

5 4

6 4

7 4

e 4

9 4

10 4

11 4

12 4

13 4

14 4

15 4

16 4

6 5

7 5

I 5

9 5

10 5

11 5

12 5

13 5

14 5

15 5

16 5

17 5

16 $

19 5

20 5

7 6

8 6

9 6

10 6

11 6

12 6

13 6

14 6

15 6

122

321

1231

1333

12313
32312

121233

332112

1221332

3322131
1231331_

31223122

1246

7135

12453
27637

124563

176523

1246357
6574231

12442375

61247635

124356173

347651572
1247635513

7743226165

12437561346

1724253651
1241667432

2415737623

1 2 4 8 14

13 15 7 14 II

l 2 4 O 11 7
15 14 5 13 3 9

7

5 5

5 6

1 3 4 | 13 3 6

12 9 ? 11 5 10 15

1 2 4 6 12 3 7 9
9 11 14 10 15 13 5 6

1 2 4 6 13 9 15 11 7

10 6 5 3 2 11 1 14 12

I 2 4 6 13 14 10 7 5 12
6 13 5 15 11 9 14 3 7 I

I 2 4 | 7 3 Ii 13 t4 Ii 7

14 9 10 6 13 1 8 15 4 5 12

1 2 4 $ 11 10 13 4 9 6 7 14

12 11 7 6 5 t3 l 2 15 10 14 3
1 2 4 6 10 3 9 14 6 11 12 15 5

11 13 10 6 9 12 2 14 1 6 5 7 15

1 2 4 | 9 7 15 12 6 5 14 10 13 11

3 11 •- ? 6 13 5 15 10 1 1;I 6 ;1 14
1 2 4- $ 7 15 3 14 6 5 11 9 1;1 13 10

11 15 4 -_ S 3 14 9 IO I 7 8 13 6 12 2

1 2 4,-, | 15 II 13 9 12 5 6 6 3 14 ? 10

2 15 3 _ 4 10 S 12 8 13 4 11 I 9 14 ? ;1

1 ;1 4 "_ | 16 29
9 1;1 ? "36 25 6

1 2 4 6 16 14 27

21 36 25 13 31 9 7

1 ;1 4 _" 6 16 25 31 14

28 13 S ;12 11 26 7 21
1 2 4 8 16 3 21 29 27

30 15 13 10 25 6 18 23 28

l 2 4 O 16 14 3 9 26 22

21 31 5 29 28 25 17 23 15 27
1 2 4 8 16 13 28 15 31 5 22

23 11 19 17 29 9 3 21 25 27 7
1 2 4 It 16 lO 7 27 30 19 29 22

31 9 ;15 26 13 24 21 14 28 12 11 15

1 2 4 | 16 3 17 23 21 27 13 15 ;18

30 6 11 16 10 5 29 22 9 26 12 14 25
I. 2 4 . It 16 14 17 11 24 31 28 29 19 5

I0 25 6 ;12 18 20 13 9 7 30 23 2"/ 21 26

1 2 4 It 16 21 25 17 2fl 26 20 3 30 11 6

13 29 7 9 12 31 I0 15 24 19 14 23 22 5 27
1 2 4 It 16 18 22 30 11 12 29 13 19 25 9 3

31 28 24 7 20 17 2 26 14 23 10 6 27 21 15 5

1 2 4 6 16 19 12 Ii 3 26 7 25 18 5 21 26 13
26 17 10 30 29 27 23 14 9 21 19 6 24 31 28 20 22

1 2 4 6 16 22 9 11 13 24 18 211 3 ;13 15 27 6 10

25 18 27 19 26 12 30 17 31 7 29 14 6 16 20 21 13 5

1 2 4 8 16 23 14 28 11 13 24 lIt 29 3 25 26 22 7 31

30 27 8 6 25 20 19 22 18 5 7 9 10 ;11 17 16 31 12 29
1 2 4 It 16 18 29 9 27 7 10 24 19 22 15 30 12 21 28 23

22 21 5 26 11 9 6 13 3 11 25 15 1 5 31 24 20 27 7 17

1 2 4 | 16 32 62

53 7 45 51 14 34 26

1 2 4 It 16 32 29 55
56 27 33 62 19 38 15 52

1 2 4 It 16 32 21 27 ]._1

46 30 45 41 39 28 38 42 63
1 2 4 6 16 32 19 57 14 63

29 II SIt 47 45 25 7 37 53 51
I 2 4 6 16 32 11 63 45 21 51

39 46 42 31 58 6Q 46 14 54 24 57

1 2 4 8 16 32 26 23 37 6I 52 43

62:41 5_ 34 6 _ 21 ,0 1, _ 5,1 16 32 37 19 46 28 4 63 25
7 62 60 42 56 10 55 13 31 12 43 26 4_,

_ 27 _ : 16 32 21 19 63 14 60 2_ 38 43$ 2 5 1 9 45 49 22 57 33 50 44 23

1 2 4 8 16 32 ;4 22 56 59 13 61 23 37 49

50 Ii 19 3 B 26 14 _I_ 44 41 26 55 52 21 42 7



16

17

18

19

20

21

22

23

24

8

9

10

11

;2

13

14

_5

16

17

18

19

20

21

22

23

24

25

26

27

311

9

10

11

13

13

14

15

16

17

18

]9

20

21

22

23

24

25

26

27

28

29

30

31

32

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

?

7

B

|

8

8

$

B

8

B

8

8

8

8

8

8

8

8

8

E

8

8

8

8

8

8

1 2 4 B 16 32 41 44 37 26 28 31 55 38 35 49

22 E1 42 7 19 .%0 25 $2 47 21 14 $9 11 56 13 40
1 2 4 B 16 32 22 _7 58 48 14 29 41 55 27 60 34

17 40 10 53 46 31 54 28 50 9 38 19 13 47 5 11 49
1 2 4 8 16 32 L3 62 42 25 3 23 36 50 31 56 47 52

14 59 21 19 38 49 35 63 28 55 22 41 37 26 11 7 61 44

1 2 4 8 16 32 27 56 37 28 5 46 35 59 23 29 52 42 18

36 53 6 49 60 54 19 41 50 39 15 45 12 20 25 63 II 30 26

I 2 4 B 16 32 48 14 39 27 33 5 28 15 42 45 52 22 41 12

62 50 29 3 21 63 57 38 53 51 56 43 26 46 9 19 23 44 36 17
i 2 4 8 t6 32 14 46 _3 25 12 15 40 [0 26 62 21 35 5 19 54

37 6 41 18 55 20 3 7 40 45 60 50 53 24 29 33 57 62 51 34 25

! 2 4 8 16 )2 _ 19 7 5D 31 25 9 21 54 26 44 46 6_ 55 56 57

28 6 27 42 22 60 4: 37 38 l_ 52 20 11 14 43 33 59 49 36 30 13 _5

1 2 4 S 16 32 42 28 43 62 20 5 39 56 44 63 49 26 50 15 38 3 17

:]3 19 41 11 25 6 5_ 14 60 22 12 27 $4 57 52 36 30 46 53 9 29 45 35
1 2 4 8 16 32 42 28 43 62 20 5 39 56 44 63 49 26 50 15 38 3 17 33

19 25 6 41 II 59 _4 60 22 12 27 54 57 52 36 30 46 53 9 29 45 _5 23 51

1 2 4 B 16 32 64 12;
I8 31 51 BO 116 106 94 ID5

1 2 4 8 16 32 64 29 [19

59 91 124 30 120 46 Ii! 77 41
1 2 4 8 16 32 64 118 _07 88

B3 89 21 36 7 106 41 180 _C] 6_

1 2 4 8 16 32 64 19 7] 113 63

72 5R 45 53 91 111 35 93 73 86 I(]2
I 2 4 B 16 32 64 29 118 97 91 46

111 1L2 7 85 73 56 [00 59 67 106 55 125

1 2 4 8 16 32 64 23 61 115 103 73 124
56 27 37 B5 54 122 76 17 79 42 96 67 110

1 2 4 8 16 32 54 103 54 98 [5 127 75 30
70 45 120 93 87 43 LOB 113 25 46 21 69 116 60

2 4 8 16 32 64 25 41 115 30 58 71 /.05 60

49 108 50 [27 10 90 $5 92 39 81 120 116 67 _.01 23

1 2 4 8 16 32 64 14 44 69 43 124 29 70 63 27

ll8 24 119 41 113 82 [0_] 62 75 96 99 30 115 81 lig 84

1 2 4 8 16 32 64 38 5 tO7 85 41 30 112 50 123 97
49 42 23 94 29 88 83 19 109 II0 60 119 84 74 15 76 _03

I 2 4 8 16 32 64 85 28 88 47 114 7 58 52 99 74 75

109 94 102 104 124 119 7b 105 69 116 81 53 123 43 22 13 82 91

I 2 4 I 16 32 64 38 14 35 19 86 97 95 1_2 107 88 113 77

57 109 74 73 83 54 11 85 103 102 25 125 13 60 114 104 |19 66 92
_. 2 4 8 16 32 64 _,3 82 S4 2.] B1 90 112 57 30 103 52 71 75

101 105 37 91 51 38 93 25 47 118 33 92 40 58 78 106 2D 105 87 8B

1 2 4 8 16 32 64 103 52 114 75 94 22 120 35 4]1 63 85 105 59 14

66 56 19 112 65 90 89 115 38 37 62 26 101 SS 69 7R 13 7 111 47 92

1 2 4 | 16 32 64 28 88 74 82 85 47 44 8) 7 57 118 105 93 39 111
54 116 58 31 33 123 76 101 34 26 23 94 70 53 43 51 75 126 112 79 90 9

1 2 4 II 16 32 64 120 96 89 122 92 27 55 37 63 108 50 52 70 103 13 15
28 126 90 86 76 68 71 42 98 53 67 49 127 116 81 19 25 41 97 35 9 107 14

1 2 4 S 16 32 64 36 3 3S 23 54 65 42 63 56 70 94 47 123 124 100 112 19

35 SO 30 80 71 107 62 21 109 114 88 15 74 90 111 13 76 119 27 57 12S 9 106 97

1 2 4 | 16 32 64 22 31 91 102 35 10e 101 56 9;[ 111 116 45 123 85 42 15 8'_ 73
57 94 7 = 33 26 114 62 71 67 53 120 6 28 111 50 43 9"/ 75 13 5 17 54 134 119 BO

1 2 4 II 16 32 64 62 t22 44 87 23 97 93 17 39 57 33 107 69 53 100 43 104 116 106

7t 115 53 127 1;14 31 90 47 78 5 10 9 86 103 50 211 76 19 13 |e 6 58 40 66 89 113

J. "J 4 8 16 32 64 112 125 51 123 70 31 48 103 2 r" 67 46 92 8:1 _i4 89 15 55 98 126 120
22 27 3| 44 60 105 57 45 18 39 91 49 42 97 30 79 100 108 111 76 19 43 5| 69 54 102 115

1 3 4 e 16 32 64 108 107 53 46 41 $3 97 84 59 119 78 114 77 120 103 11 126 49 61 23 39

90 66 1111 13 89 85 106 26 22 92 72 36 62 116 133 71 56 37 68 14 73 111 86 75 1;17 99 93 6S

] 3 4 B 16 32 64 128 231
_13 113 $4 ;133 189 107 45 232 179

1 3 4 _ | 16 32 64 128 235 190

141 $_ 53 319 78 4.t 147 214 236 241

1 3 : 4- | 16 32 64 12B 117 233 15
141 161_ 1041; 3_1i 124 1.54 221 206 90 57 1_9

1 2 4 II 16 32 64 128 95 314 341 54

351 15| 108 163 316 _30 106 57 237 195 116 75

1 '_ 4 $ 16 32 64 128 227 55 21| 77 102
75 $4 19 _4_ _55 234 120 14I 215 127 164 101 171

1 _ 4 8 16 32 64 128 27 1_6 62 ;104 177 235

251 166 98 41 S8 101 180 172 !.51 317 199 21S II1 47

1 2 4 8 16 32 64 128 t78 183 123 _:e3 235 1_5 231_1 23_ 120 197 15s 216 31 78 37 171 214 141 60 98 84

| _ 4 e 16 ]2 64 128 206 247 166 180 _19 63 149 131
108 95 11il 61 1_0 89 197 83 312 43 177 107 243 146 13 37

1 _ 4 8 16 32 64 128 167 245 79 169 200 118 93 51 67
2_8 87 15| 94 158 153 38 t78 5_ 227 219 45 177 52 _13 63 88

I 2 4 8 16 32 64 t28 105 62 IB| 187 147 223 ]54 75 SO 112

86 45 _4_ 157 92 167 26 [27 245 49 170 164 71 208 200 317 21 198

] ;I 4 II 16 32 64 128 56 191 198 173 63 170 103 340 B9 125 ,_3)
65 94, _05 142 165 166 59 238 115 130 85 52 163 111 41 23 116 220 181

1 _ 4 8 16 32 64 1.28 6 209 78 233 44 _4= 109 203 162 53 92 69

1"19 14"_ 10 131 23 165 121 196 252 245 150 154 43 225 125 58 112 190 95 157

1 _l 4 8 16 32 64 128 83 50 13 173 39 ]08 198 155 253 _35 ]42 90 _36
212 21S 175 44 101 122 1.95 18[ 53 133 150 90 126 20 220 11 96 92 99 201 77

1 2 4 8 16 32 64 128 204 135 19D 184 22 200 58 215 113 1/I) _20 235 155 46

21.2 61 32 It& _03 ]4 84 90 245 14B 65 39 140 ]54 231 120 119 19 ;109 109 a7 1711

1 2 4 8 16 32 64 128 90 61 e4 6 195 47 249 148 252 206 228 31 100 ll,_ 323
143 120 114 $8 133 40 11 1S4 135 162 134 107 193 331 177 147 ;_42 183 234 205 216 171 53

1 3 4 8 16 32 64 126 127 _221 152 237 _48 210 134 _09 47 94 67 1,]1 13 26 5_ 104

207 190 196 24_ 159 228 200 178 227 245 234 170 188 306 185 319 151 137 161 165 243 141_ 175 131

1 2 4 8 16 32 64 128 216 179 214 189 _]55 1_7 244 83 49 100 11 341 20 85 134 115 30
186 205 45 53 60 230 207 220 164 235 165 159 29 74 122 86 104 63 197 ? 97 16Ill 195 147 t31

_ 4 S 16 32 64 1.2g 58 176 10 35_ 61 19S 241 161 31 131 197 1.13 21.2 1611 166 86 141 151122 98 188 321 227 83 142 92 78 152 _01 143 151 233 _03 57 148 79 187 235 145 350 120 338 170 103

1 2 4 8 16 32 _4 128 11 53 102 123 225 13 222 180 136 243 142 201 203 3{) 86 209 $3 109 49
199 31 181 121 25 57 226 90 205 162 174 104 336 163 6S 229 54 157 74 119 146 246 24 116 58 169 134

2 4 8 16 32 64 128 167 196 159 103 48 56 135 189 14S 13 186 66 235 110 105 21 164 _153 179 92

42 204 97 219 109 .240 54 t16 172 182 95 IL4 252 $6 ]39 213 98 201 55 163 1'/7 27 69 210 220 36 _47 60

,_ ,2 4 8 16 32 b4 128 15 35 95 _00 59 165 _25 115 4 :e 147 28 186 7 70 255 249 174 50 107 06 2115 7_ 131 172 26 110 216 [21 246 162 212 183 60 188 233 177 66 199 137 237 3_1 2"; 251 211 96 17 222 55 119

I 2 4 8 16 32 64 128 "74 58 9_. 233 178 "/i 39 200 126 196 _29 224 152 i"/2 193 220 163 11.9 203 253 50 173
155 24_ 95 27 }48 177 85 166 180 222 165 3_8 53 6_ 51 213 134 46 70 30 56 194 191 107 215 73 %2 63 255 87

1 2 4 8 16 32 64 128 119 193 60 207 131 108 246 179 222 38 182 204 7 20 33 172 126 _2 26 42 187 85 157

152 226 206 98 105 168 146 113 249 143 91 209 134 133 124 8_, 63 189 25 71 198 95, 13 106 58 _45 111 12 231 143 170

1 2 4 8 16 32 64 128 23 142 20 49 42 103 1811 19 85 95 167 122 91 144 18 159 47 225 108 169 137 1182 204 221
232 207 11 187 99 8? 249 _In 245 55 226 65 6 198 44 174 179 237 40 244 189 109 120 131 149 215 33 240 164 30 210 88



Appendix C

Technical Note dated March 17, 1994

Documenting Preliminary Results of the PCI Study



Technical Note

Date: March 17, 1994

To: Warner Miller, Victor Sank, GSFC

From: William J. Ebel, Mississippi State University

Subject: TRMM Performance Without the PCI

Cc: Frank Ingels

Abstract - The developments of the Communication Link and Error ANalysis (CLEAN)

simulator have reached the point where accurate assessments of the performance of the TDRSS

downlink without the PCI but with node synchronization in the Viterbi decoder can be

performed. In this note, the applicable developments of CLEAN are described and preliminary

results of the PCI study are presented.

I. Introduction

As you are well aware, the TDRSS downlink includes an optional PCI and a required rate

1/2 constraint length 7 convolutional code. The demodulator provides 8-level soft-decision data

to the DePCI and subsequently to the Viterbi decoder. Tap synchronization of the DePCI or

node synchronization of the Viterbi decoder must be established at the receiver depending upon

whether the PCI is switched on. The question which has been posed and discussed [1,2] is

whether the PCI is necessary for the TDRSS downlink as used by TRMM.

In Section II to follow, applicable developments of CLEAN are described and their

relevance to the actual system is discussed. In Section III, preliminary studies of the

performance of the TDRSS downlink for TRMM without the PCI is presented and conclusions

follow in Section IV.



II. CLEAN Simulator Developments

Two recent CLEAN developments are relevant to the issue at hand; 1) program vit3sync

which mimics the LV7017C Viterbi decoder with node synchronization, and 2) program rfi

which mimics the effect at the soft-decision demodulator output of multiply occurring RFI

sources in the TDRSS downlink. Besides these, program blkdeint which performs depth 5 block

deinterleaving and blkdecod which performs Reed-Solomon (RS) decoding for the (255,223) RS

code are used to estimate performance. These latter two programs are described in [3].

The soft-decision data output by the TDRSS downlink receiver at White Sands is input to

the LV7017C hardware for PCI/node synchronization and Viterbi decoding. The specific details

of the synchronization strategy and Viterbi decoding can be found in [4]. The algorithm to

perform node synchronization, when the PCI is not switched on, and soft-decision Viterbi

decoding in the LV7017C hardware has been exactly duplicated in the CLEAN program

vit3svnc. This includes the Viterbi decoder trellis metrics, the metric renormalization strategy,

the node synchronization strategy using a SyncCounter, the path memory length, etc.

Both functional and statistical verifications of program vit3sync were performed. For the

statistical verification, two critical performance factors for the LV7017C Viterbi decoder were

considered; (1) the Viterbi decoder output Bit Error Rate (BER), and (2) the average time to

detect loss of node synchronization. To consider item (1), Figure 3.1 shown on the next page

was extracted from [4]. This figure shows a comparison of the LinCom Viterbi decoder

simulation results with theoretical bounds assuming an AWGN channel. The cross hairs show

corresponding simulation results for program vit3sync of the CLEAN simulator. The BER for

vit3sync matches the LinCom simulation exceptionally well. To consider item (2), various soft

values were deleted from a post threshold data stream. The average time to detect loss of node

synchronization has been shown to be roughly 200-300 bits at the Viterbi decoder output [4,5]

for EJNo = 5dB. For vit3sync, average time to detect loss of node synchronization was observed

to be 200-350 bits at the Viterbi decoder output.

Program rfi was written to mimic the effect several RFI sources have on the soft values

output by the 8-level receiver threshold device and also includes thermal noise. It is assumed

that the occurrence time for noise bursts are Poisson in distribution and that the burst duration

spans 15 threshold output soft values. The program requires the following inputs:

1) Hard-decision error probability due to thermal noise alone

2) Number of RFI sources

and for each RFI source, the following inputs are required:

1) Hard-decision error probability during a burst (inclusive of thermal noise)

2) Average interval between bursts (reciprocal of rate of burst occurrence)



3) Burst length(in termsof thenumberof thresholdoutputsoft values)

Thephilosophyfor determiningthe softvaluesoutputby the8-levelthresholddeviceis
asfollows. WhennoRFIoccurs,therandomvariableatthethresholdinputis Gaussianwith a

meanandvariancewhicharerelatedto thesignalpowerandnoisepower,respectively.The

ratio of the signal power to the noise power is the signal-to-noise ratio. In fact, there is a

Q-function relationship between the hard-decision error probability and the signal to noise ratio

for the random variable at the threshold input. When an RFI noise burst occurs, it has the effect

of increasing the noise power but does not affect the signal power, and therefore has the effect of

increasing the hard-decision error probability. However, the probability density function of the

random variable at the threshold input is still Gaussian. Therefore, to determine the probability

density function of the random variable at the threshold input, it is only necessary to know the

hard-decision error probability at the threshold output during each RFI source burst. In

summary, to determine which soft value is output by the thresholder, it necessary to determine:

1) which RFI sources are currently causing a burst to occur

2) the total error probability for the current threshold output value

3) the variance of the Gaussian random variable to be thresholded

The method used to statistically generate the soft output value for a given hard-decision error

probability is described in [6] for program iidsoft.

In effect, the program can accurately represent the statistical nature of the soft values at

the 8-level threshold output due to thermal noise and multiple RFI sources. To justify the

appropriateness of this model, recall that all the distortions which occur in the real TDRSS

downlink including satellite non-linearities, hardware distortion, etc. are lumped into a single

parameter called the implementation loss which is realized in terms of an offset to the

signal-to-noise ratio at the receiver [7].

III. Preliminary PCI Study Results

Several studies were conducted to investigate the performance of the TDRSS downlink

for TDRS West and TDRS East and for the SSA return link. These RFI environments may be

found in [8] and are summarized below.

The first study conducted involved simulating the TDRS West environment as described

by Ted Kaplan in [2] for TRMM. The TRMM data rate is 2Mbps (4MHz channel rate) and each

RFI pulse is 3.5 usec long so that at most 15 threshold output soft values will be affected by a

single burst. The signal-to-thermal noise ratio at the receiver was taken to be Eb/No = 4.5dB so

that the Viterbi decoder output error probability is roughly 10 .5 (with no RFI). This corresponds

to a thermal noise hard-decision post threshold error probability of about 0.0465. Of the 5



knownRFI sourceswhichexist for theSSAreturnlink for TDRSWest,thetwo wereignored

andthreeweretreatedasasinglesourcewith infinite powerconsistentwith [2]. This is

summarizedin TableI [8].

Giventhischannelmodel,thefollowing simulationwasconductedusingCLEAN.

1) GeneratePNcodeto simulatedata(1.5x107bits) usingprogrampnseq

2) ConvolutionallyencodethePN sequenceusingtheNASA rate1/2constraintlength7

convolutionalcodeusingprogramconvencd

3) Generate the soft sequence which would occur at the threshold output for the encoded

binary sequence using programs bstysoft and soften.

4) Viterbi decode the received soft sequence (no PCI present) using vit3svnc which

includes node synchronization and mimics the LV7017C hardware decoder

5) Determine the error sequence at the Viterbi decoder output using program madd

6) Block deinterleave the error sequence (depth 5) using program bllateint

7) Reed-Solomon decode the deinterleaved sequence using program blkdecod

The results are summarized in Table II and suggest the following. If the signal EIRP is chosen

so that the Viterbi decoded BER (with no RFI) is 10 .5 per spec (Eb/No = 4.5dB) but RFI for

TDRS West happens to be in the channel (clearly a worse case scenario), then the Reed-Solomon

decoder can correct many of the errors and provide a total system BER in the neighborhood of

2 x 10 4. It is difficult to draw tangible conclusions from these results because the TDRS West

RFI environment has been simplified (as in [2]) and because the simulation only resulted in 1 RS

decoding failure out of 7350 codewords which is not a very good statistical estimate. However,

these results bring into question the results shown in Figure 1 of reference [2] which shbws the

RS decoder output BER to be about 2 × 10 -4 for an Eb/No = 4.5dB and no PCI. If this were the

true RS decoder output BER, then there should have been on the order of 3000 binary errors at

the RS decoder output.

To more accurately represent the TDRS East and TDRS West RFI environments,

program tfi of the CLEAN simulator was used to simulate all the RFI sources for two different

thermal noise EIRP values as shown in Tables III, IV, V, and VI. The signal EIRP was taken to

be 31.6dBW which gives a hard-decision threshold output BER of 0.0283 when 29dBW thermal

noise is present with no RFI and 3.47 x 10-4 when 24dBW thermal noise is present with no RFI.

The burst length of every RFI burst was taken to be 15 soft-decision threshold output values

consistent with [2].

These environments were used with the CLEAN simulation described above to

investigate the performance of the NASA concatenated coding scheme including the rate 1/2

constraint length 7 convolutional inner code with the (255,223) RS outer code. The PCI was not

switched on and program vit3sync was used to perform Viterbi decoding which includes node



synchronization.The results are shown in Tables VII, VIII, IX, and X. These results suggest

that for the worst case scenario, the system will fail for the TDRS East environment. Although

decoding failure did not occur for the TDRS West environment, no tangible conclusions can be

drawn at this time due to insufficient statistics.

IV. Conclusions

In conclusion, the Communication Link and Error ANalysis (CLEAN) simulator is a

useful tool for investigating the performance of the TDRSS downlink. The issue of whether the

PCI is necessary for the TDRSS downlink has been investigated. Preliminary results suggest

that the TDRS West RFI environment may not be a problem without the PCI, but that the worst

case TDRS East environment may give rise to significant decoding failures out of the

Reed-Solomon decoder.

Bibliography

l°

.

.

.

,

.

.

.

W. Miller, "TRMM Performance in RFI without the PCI," NASA Goddard, Code 738.3,

December 16, 1993.

T. Kaplan and T. Berman, "Performance of TRMM Communications in RFI With and

Without the PCI," Stanford Telecom, Code 531.1, December 22, 1993.

Ebel, W.J., and Ingels, F.M., "An Investigation of Error Characteristics and Coding

Performance", MSU Department of Electrical and Computer Engineering, Technical

Semi-Annual Report, December 30, 1992, NASA Grant NAG5-2006.

Wang, James, and Peng, Wei-Chung, "Simulation and Validation of Viterbi Decoder",

Interoffice Memorandum, LinCom Corporation, TM-8719-05-09 and TM-8707-06, March

1, 1989.

Operational and Maintenance Manual for General Purpose LV7017C Convolutional

Enc0der-ViI¢rbi-Deqoder and Interleaver-Deintefleaver, Hughes Network Systems, Hughes

Aircraft Company, TM 200090, October 1989.

Ebel, W.J., Ingels, F.M., and Crowe, S., "The Communication Link and Error ANalysis

(CLEAN) Simulator", MSU Department of Electrical and Computer Engineering, Technical

Semi-Annual Report, December 30, 1993, NASA Grant NAG5-2006.

Wang, J., and Lai, D., "Simulation of Convolutional and Reed-Solomon Coded System",

LinCom, TR-8719-13, April 30, 1990.

McKenzie, T.M., and Choi, H., "User's Guide to CLASS Computer Program for

Synchronization and Doppler Tracking with RFI: Revision 2", LinCom, TR-8512-22,

December 1985.



Table I. Modelof the TDRS West RFI environment

EIRP

(dBW)

25

35

45

Burst

Length

Duty Cycle

(%) Comments

15 3.5 ignored

15 2.2 ignored

15 0.6

55 15 1.1

65 15 0.1

1.8% D.C.

single source

BER = 1/2

Table II.

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

Reed-Solomon

Decoder Output

Performance results for the TDRS West RFI environment model

Simulation

Length

3x 10 7

1.5 × 10 7

1.5 × 107

Total Observed

Binary Errors

1.64 × l0 6

(2.68 x 105 in bursts)

1.0 × 105

(no node sync loss)

34

Observed

BER

0.0547

6.68 × 10 -3

2× 10 -6

(1 decoding failure out of

7350 codewords)



TableIII. Modelof theTDRSEastRFI environmentfor thermalnoiseEIRPof 29dBW

EIRP Duty TotalNoisew/ RawChannel
(dBW) Cycle(%) Thermal (dBW) EJNo BER

Thermal N/A 29 2.6 0.0283

20 10 29.5 2.1 0.0359

30 13 32.5 -.9 0.101

40 3 40.3 -8.7 0.301

50 2 50.0 -18.4 Single

60 1.8 60.0 -28.4 Source

70 0.2 70.0 -38.4 BER = 1/2

Table IV.

EIRP

(dBW)

Model of the TDRS East RFI environment for thermal noise EIRP of 24dBW

Duty

Cycle (%)

Total Noise w/

Thermal (dBW)

24

&/No

7.6

Raw Channel

BER

Thermal N/A

20 10 25.5 6.1 0.00216

30 13 31.0 0.6 0.0649

40 3 40.0 -8.5 0.297

50 2 50.0 -18.4

1.8 60.0 -28.460

70 0.2 -38.470.0

3.47 x 10 -4

Single

Source

BER = 1/2



TableV. Modelof the TDRS West RFI environment for thermal noise EIRP of 29dBW

EIRP

(dBW)

Duty

Cycle (%)

Total Noise w/

Thermal (dBW) /,/No

Raw Channel

BER

Thermal N/A 29 2.6 0.0283

25 3.5 30.4 1.1 0.0543

35 2.2 36.0 -4.4 0.197

45 0.6 45.1 -13.5 0.382

55 1.1 55.0 -23.4 Single

65 0.1 65.0 -33.4 BER = 1/2

Table VI. Model of the TDRS West RFI environment for thermal noise EIRP of 24dBW

EIRP

(dBW)

Duty

Cycle (%)

N/A

Total Noise w/

Thermal (dBW)

24

 /No

7.6

Raw Channel

BER

Thermal

25 3.5 27.5 4.1 0.0117

35 2.2 35.3 -3.7 0.178

45 0.6 45.0 -13.4 0.380

55.0 -23.455 1.1

65 0.1

3.47 x 10 -4

Single

BER = 1/265.0 -33.4



TableVII. Performanceresultsfor theTDRSEastRFIenvironmentmodelwith 29dBWthermal
noiseEIRP

Simulation
Location

Hard-decision

ThresholdOutput

Viterbi Decoder

Output

Reed-Solomon
DecoderOutput

Simulation
Length

2× 10 6

1.0 x 10 6

1.0 x 106

Total Observed

Binary Errors

1.31 x 105

(8.99 x 104 in bursts)

2.6 x 10 4

(no node sync loss)

2.31 x 104

Observed

BER

0.0657

0.0260

0.0232

(411 decoding failures out

of 490 codewords)

Table VIII. Performance results for the TDRS East RFI environment model with 24dBW

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

thermal noise EIRP

Simulation

Length

2× 106

1.0 x 106

1.0 x 10 6

Reed-Solomon

Decoder Output

Total Observed

Binary Errors

7.35 x 104

(7.30 × 104 in bursts)

1.83 x 10 4

(no node sync loss)

9.65 × 103

Observed

BER

0.0367

0.0183

0.00965

(213 decoding failures out

of 490 codewords)



TableIX. Performanceresultsfor theTDRSWestRFI environmentmodelwith 29dBWthermal
noiseEIRP

Simulation
Location

Hard-decision

ThresholdOutput

Viterbi Decoder
Output

Reed-Solomon
DecoderOutput

Simulation
Length

2x 10 6

1.0 x 106

1.0 × 10 6

Total Observed

Binary Errors

8.11 x 104

(2.84 x 104 in bursts)

6.33 x 103

(no node sync loss)

0

Observed

BER

0.0406

0.00633

0.0

(0 decoding failures out of

490 codewords)

Table X. Performance results for the TDRS West RFI environment model with 24dBW thermal

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

Reed-Solomon

Decoder Output

Simulation

Length

2x 106

1.0 x 106

1.0 x 106

noise EIRP

Total Observed

Binary Errors

2.58 x 104

(2.51 x 104 in bursts)

4.59 x 104

(no node sync loss)

0

Observed

BER

0.0129

0.00459

0.0

(0 decoding failures out of

490 codewords)



Modelof thenewTDRSEastRFI environment
for thermalnoiseEIRP of 29dBW(BW = 20MHz)

EIRP Duty Cycle Duty Cycle TotalNoisew/ RawChannel
(dBW) High RFI Low RFI Thermal(dBW) E/N o BER

Thermal N/A N/A 29 2.6 0.0283

30 6.5 4.5 32.5 -0.9 0.101

40 2.5 1.5 40.3 -8.7 0.301

50 3.5 1.0 50 -18.4 1/2

Performance results for the new TDRS East High RFI environment model

with 29dBW thermal noise EIRP

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

Reed-Solomon

Decoder Output

Simulation

Length

1 × 106

5.0 x 105

5.0 × 105

Total Observed

Binary Errors

1.11 x 105

(6.15 x 104 in bursts)

9.33 x 10 3

(no node sync loss)

4.50 x 10 3

Observed

BER

0.0557

0.0186

0.00900

(95 decoding failures out

of 245 codewords)

Performance results for the new TDRS East Low RFI environment model

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

Reed-Solomon

Decoder Output

with 29dBW thermal noise EIRP

Simulation

Length

1 x 106

5.0 x 105

5.0 x 105

Total Observed

Binary Errors

8.06 x 104

(2.77 x 104 in bursts)

2.97 x 10 3

(no node sync loss)

0

Observed

BER

0.0403

0.00594

0

(0 decoding failures out of

245 codewords)



Modelof thenewTDRSEastRFI environment
for thermalnoiseEIRPof 23.5dBW(BW = 20MHz)

EIRP Duty Cycle Duty Cycle TotalNoisew/ RawChannel
(dBW) High RFI Low RFI Thermal(dBW) EJN o BER

Thermal N/A N/A 23.5 8.1 1.64 x 10 -4

30 6.5 4.5 30.9 0.7 0.0627

40 2.5 1.5 40.1 -8.5 0.297

50 3.5 1.0 50 - 18.4 1/2

Performance results for the new TDRS East High RFI environment model

with 23.5dBW thermal noise EIRP

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

Reed-Solomon

Decoder Output

Simulation

Length

1 × 106

5.0 × 105

5.0 × l0 s

Total Observed

Binary Errors

5.69 x 104

(5.66 x 104 in bursts)

6.99 x 103

(no node sync loss)

1.51 × 10 3

Observed

BER

0.0284

0.0140

0.00302

(37 decoding failures out

of 245 codewords)

Performance results for the new TDRS East Low RFI environment model

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

Reed-Solomon

Decoder Output

with 23.5dBW thermal noise EIRP

Simulation

Length

1 xlO 6

5.0 x 10 s

5.0 x l0 s

Total Observed

Binary Errors

2.49 x 10 4

(2.45 x 104 in bursts)

2.09 x 103

(no node sync loss)

Observed

BER

0.0124

0.00419

0

(0 decoding failures out of

245 codewords)



Modelof the new TDRS East RFI environment

for thermal noise EIRP of 22dBW (BW = 4MHz)

EIRP

(dBW)

Duty Cycle Duty Cycle

High RFI Low RFI

Total Noise w/

Thermal (dBW) E/No

Thermal N/A N/A 22 9.6 9.76 x 10 -5

30 6.5 4.5 25.5 6.1 0.00216

40 2.5 1.5 33.3 - 1.7 0.122

50 3.5 1.0 43 -11.4 0.351

Raw Channel

BER

Performance results for the new TDRS East High RFI environment model
with 22dBW thermal noise EIRP

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

Reed-Solomon

Decoder Output

Simulation

Length

1 ×10 6

5.0 x 105

5.0 x 105

Total Observed

Binary Errors

3.06 x 105

(3.04 x 104 in bursts)

3.77 x 103

(no node sync loss)

0

Observed

BER

0.0153

0.00753

0

(0 decoding failures out of

245 codewords)

Performance results for the new TDRS East Low RFI environment model

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

output

Reed-Solomon

Decoder output

with 22dBW thermal noise EIRP

Simulation

Length

1 x 10 6

5.0 x 105

5.0 x 105

Total Observed

Binary Errors

1.10 x 104

(1.10 x 10 4 in bursts)

918

(no node sync loss)

Observed

BER

0.00548

0.00184

0

(0 decoding failures out of

245 codewords)



Modelof thenewTDRSEastRFIenvironment
for thermalnoiseEIRPof 16.5dBW (BW = 4MHz)

EIRP

(dBW)

Duty Cycle

High RFI

Duty Cycle

Low RFI

Total Noise w/

Thermal (dBW)

Raw Channel

BER

Thermal N/A N/A 16.5 15.1

30 6.5 4.5 23.9 7.7 3.01 x 10 -4

40 2.5 1.5 33.1 -1.5 0.117

50 3.5 1.0 43 -11.4 0.351

4.32 x 10 -16

Performance results for the new TDRS East High RFI environment model

with 16.5dBW thermal noise EIRP

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

Reed-Solomon

Decoder Output

Simulation

Length

1 x 10 6

5.0 × l0 s

5.0 x 105

Total Observed

Binary Errors

3.00 x 10 4

(3.00 x 104 in bursts)

3.37 × 103

(no node sync loss)

0

Observed

BER

0.0150

0.00674

0

(0 decoding failures out of

245 codewords)

Performance results for the new TDRS East Low RFI environment model

with 16.5dBW thermal noise EIRP

Simulation

Location

Hard-decision

Threshold Output

Viterbi Decoder

Output

Reed-Solomon

Decoder Output

Simulation

Length

1 × 106

5.0 x 105

5.0 x 10 5

Total Observed

Binary Errors

1.07 x 104

(1.07 x 10 4 in bursts)

786

(no node sync loss)

0

Observed

BER

0.00533

0.00157

0

(0 decoding failures out of

245 codewords)


