240 research outputs found

    Hybridizing Cartesian Genetic Programming and Harmony Search for Adaptive Feature Construction in Supervised Learning Problems

    Get PDF
    The advent of the so-called Big Data paradigm has motivated a flurry of research aimed at enhancing machine learning models by following very di- verse approaches. In this context this work focuses on the automatic con- struction of features in supervised learning problems, which differs from the conventional selection of features in that new characteristics with enhanced predictive power are inferred from the original dataset. In particular this manuscript proposes a new iterative feature construction approach based on a self-learning meta-heuristic algorithm (Harmony Search) and a solution encoding strategy (correspondingly, Cartesian Genetic Programming) suited to represent combinations of features by means of constant-length solution vectors. The proposed feature construction algorithm, coined as Adaptive Cartesian Harmony Search (ACHS), incorporates modifications that allow exploiting the estimated predictive importance of intermediate solutions and, ultimately, attaining better convergence rate in its iterative learning proce- dure. The performance of the proposed ACHS scheme is assessed and com- pared to that rendered by the state of the art in a toy example and three practical use cases from the literature. The excellent performance figures obtained in these problems shed light on the widespread applicability of the proposed scheme to supervised learning with legacy datasets composed by already refined characteristics

    Positive Psychology: Supervisor Leadership in Organizational Citizenship Behaviors in Nurses

    Get PDF
    Introduction: In nursing, identifying factors encouraging positive work attitudes is ex-tremely important since a nurse’s performance directly impacts the quality of the care they provide, and, therefore, their patients’ health. Objective: The main objective of this research is to analyze whether the supervisor–nurse relationship is positively correlated with a nurse’s organizational citizenship behaviors. Thus, we established a main hypothesis as follows: the quality of the supervi-sor–nurse interpersonal relationship is positively related to the job satisfaction of the nurse, controlled by moderating the effects of psychological empowerment, the perceived organizational sup-port, and leader–leader exchange. Methodology: This is a cross-sectional descriptive study with individuals as the units of analysis. The population studied comprised all the nurses and supervisors working in nine public hospitals in the autonomous community of Aragon (Spain). The sample con-sisted of 2541 nurses, 192 supervisors, and 2500 paired dyads. Self-report questionnaires were used to ensure workers’ anonymity. The dependent variable was the nurse’s organizational citizenship behaviors; the main independent variable was the supervisor’s leadership; the moderating variables were the nurse’s empowerment, the organizational support the nurse perceived, and the quality of the supervisor–superior relationship. Results: Empirical evidence demonstrates that the quality of the supervisor–nurse relationship is positively correlated with organizational citizenship behaviors. The results also confirm the moderating effect of nurses’ empowerment and of the organizational support they perceive. Discussion: Our research shows how important it is for organizations to es-tablish management practices promoting high-quality nurse–supervisor relationships; thus, hospital management should monitor both the supervisors’ performance and leadership. Conclusions: The quality of the relationship the supervisor establishes with their nurses is vitally important since it is a necessary requirement for beneficial results for the organization as a result of citizenship behavior practice

    Interaction of sexual dimorphism and gene dosage imbalance in skeletal deficits associated with Down syndrome

    Get PDF
    All individuals with Down syndrome (DS), which results from trisomy of human chromosome 21 (Ts21), present with skeletal abnormalities typified by craniofacial features, short stature and low bone mineral density (BMD). Differences in skeletal deficits between males and females with DS suggest a sexual dimorphism in how trisomy affects bone. Dp1Tyb mice contain three copies of all of the genes on mouse chromosome 16 that are homologous to human chromosome 21, males and females are fertile, and therefore are an excellent model to test the hypothesis that gene dosage influences the sexual dimorphism of bone abnormalities in DS. Dp1Tyb as compared to control littermate mice at time points associated with bone accrual (6 weeks) and skeletal maturity (16 weeks) showed deficits in BMD and trabecular architecture that occur largely through interactions between sex and genotype and resulted in lower percent bone volume in all female and Dp1Tyb male mice. Cortical bone in Dp1Tyb as compared to control mice exhibited different changes over time influenced by sex × genotype interactions including reduced cortical area in both male and female Dp1Tyb mice. Mechanical testing analyses suggested deficits in whole bone properties such as bone mass and geometry, but improved material properties in female and Dp1Tyb mice. Sexual dimorphisms and the influence of trisomic gene dosage differentially altered cellular properties of male and female Dp1Tyb bone. These data establish sex, gene dosage, skeletal site and age as important factors in skeletal development of DS model mice, paving the way for identification of the causal dosage-sensitive genes. Skeletal differences in developing male and female Dp1Tyb DS model mice replicated differences in less-studied adolescents with DS and established a foundation to understand the etiology of trisomic bone deficits

    Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes

    Get PDF
    Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes

    Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin

    Get PDF
    Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin

    Genetic dissection of triplicated chromosome 21 orthologs yields varying skeletal traits in Down syndrome model mice

    Get PDF
    Down syndrome (DS) phenotypes result from triplicated genes, but it is generally unknown how specific three copy human chromosome 21 (Hsa21) orthologous genes or interactions between genes affect these traits. A mouse mapping panel genetically dissecting Hsa21 syntenic regions was used to investigate the contributions and interactions triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16). Four-month-old femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr, and Dp1Tyb;Dyrk1a+/+/- mice were analyzed by micro-computed tomography and 3-point bending to assess skeletal structure and mechanical properties. Male and female Dp1Tyb mice, with the entire Hsa21 homologous region of Mmu16 in three copies, display specific bone deficits similar to humans with DS and were used as a baseline comparison for the other strains in the panel. Bone phenotypes varied based on triplicated gene content, sex, and bone compartment. Three copies of Dyrk1a played a sex-specific, essential role in trabecular deficits and may interact with other genes to influence cortical deficits related to DS. Triplicated genes in Dp9Tyb and Dp2Tyb mice improved some skeletal deficits. As triplicated genes may both improve and worsen bone deficits, it is important to understand the interaction between and molecular mechanisms of skeletal alterations affected by these genes

    Structure and dynamics of nanoconfined water and aqueous solutions

    Full text link
    This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed

    Gene expression dysregulation domains are not a specific feature of Down syndrome

    Get PDF
    Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), results in a broad range of phenotypes. A recent study reported that DS cells show genome-wide transcriptional changes in which up- or down-regulated genes are clustered in gene expression dysregulation domains (GEDDs). GEDDs were also reported in fibroblasts derived from a DS mouse model duplicated for some Hsa21-orthologous genes, indicating cross-species conservation of this phenomenon. Here we investigate GEDDs using the Dp1Tyb mouse model of DS, which is duplicated for the entire Hsa21-orthologous region of mouse chromosome 16. Our statistical analysis shows that GEDDs are present both in DS cells and in Dp1Tyb mouse fibroblasts and hippocampus. However, we find that GEDDs do not depend on the DS genotype but occur whenever gene expression changes. We conclude that GEDDs are not a specific feature of DS but instead result from the clustering of co-regulated genes, a function of mammalian genome organisation

    Comprehensive phenotypic analysis of the Dp1Tyb mouse strain reveals a broad range of down syndrome-related phenotypes

    Get PDF
    Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, these dosage-sensitive causative genes remain unknown. Animal models enable identification of genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. In order to establish if this model recapitulates DS phenotypes, we comprehensively phenotyped Dp1Tyb mice using 28 tests of different physiological systems and found that 468 out of 1800 parameters were significantly altered. We show that Dp1Tyb mice have wide-ranging DS-like phenotypes including aberrant erythropoiesis and megakaryopoiesis, reduced bone density, craniofacial changes, altered cardiac function, a pre-diabetic state and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for investigating complex DS phenotype-genotype relationships for this common disorder

    Interaction of sexual dimorphism and gene dosage imbalance in skeletal deficits associated with Down syndrome

    Get PDF
    present with skeletal abnormalities typified by craniofacial features, short stature and low bone mineral density (BMD). Differences in skeletal deficits between males and females with DS suggest a sexual dimorphism in how trisomy affects bone. Dp1Tyb mice contain three copies of all of the genes on mouse chromosome 16 that are homologous to human chromosome 21, males and females are fertile, and therefore are an excellent model to test the hypothesis that gene dosage influences the sexual dimorphism of bone abnormalities in DS. Dp1Tyb as compared to control littermate mice at time points associated with bone accrual (6 weeks) and skeletal maturity (16 weeks) showed deficits in BMD and trabecular architecture that occur largely through interactions between sex and genotype and resulted in lower percent bone volume in all female and Dp1Tyb male mice. Cortical bone in Dp1Tyb as compared to control mice exhibited different changes over time influenced by sex × genotype interactions including reduced cortical area in both male and female Dp1Tyb mice. Mechanical testing analyses suggested deficits in whole bone properties such as bone mass and geometry, but improved material properties in female and Dp1Tyb mice. Sexual dimorphisms and the influence of trisomic gene dosage differentially altered cellular properties of male and female Dp1Tyb bone. These data establish sex, gene dosage, skeletal site and age as important factors in skeletal development of DS model mice, paving the way for identification of the causal dosage-sensitive genes. Skeletal differences in developing male and female Dp1Tyb DS model mice replicated differences in less-studied adolescents with DS and established a foundation to understand the etiology of trisomic bone deficits
    corecore