3,389 research outputs found
Fast computation of Bernoulli, Tangent and Secant numbers
We consider the computation of Bernoulli, Tangent (zag), and Secant (zig or
Euler) numbers. In particular, we give asymptotically fast algorithms for
computing the first n such numbers in O(n^2.(log n)^(2+o(1))) bit-operations.
We also give very short in-place algorithms for computing the first n Tangent
or Secant numbers in O(n^2) integer operations. These algorithms are extremely
simple, and fast for moderate values of n. They are faster and use less space
than the algorithms of Atkinson (for Tangent and Secant numbers) and Akiyama
and Tanigawa (for Bernoulli numbers).Comment: 16 pages. To appear in Computational and Analytical Mathematics
(associated with the May 2011 workshop in honour of Jonathan Borwein's 60th
birthday). For further information, see
http://maths.anu.edu.au/~brent/pub/pub242.htm
Current State of the Electrodynamic Dust Shield for Mitigation
The Electrodynamic Dust Shield (EDS) has been developed as a means to lift, transport and remove dust from surfaces for over 18 years in the Electrostatics and Surface Physics Laboratory at NASA Kennedy Space Center. Resent advances in the technology have allowed large-scale EDSs to be fabricated using roll-to-roll techniques for quick efficient processing. The aim of the current research is to demonstrate the 3-dimensional (3-D) version of the EDS and its applicability to various surfaces of interest throughout the Artemis program that require dust mitigation. The conventional two dimensional (2-D) EDS has been comprised of interdigitated electrodes across a surface of alternating polarity to setup non-uniform electric fields in the location of interest for which the particles need to be removed. The 2-D system can be designed to accommodate various phases. For example, the two phase EDS is comprised of two electrodes 180 out of phase, while the 3-phase EDS is 120 out of phase with the adjacent leg. 4-phase EDS configurations are also possible but for each square wave a high voltage signal is applied to each leg
Advanced Grid programming with components: a biometric identification case study
Component-oriented software development has been attracting increasing attention for building complex distributed applications. A new infrastructure supporting this advanced concept is our prototype component framework based on the Grid component model. This paper provides an overview of the component framework and presents a case study where we utilise the component-oriented approach to develop a business process application for a biometric identification system. We then introduce the tools being developed as part of an integrated development environment to enable graphical component-based development of Grid applications. Finally, we report our initial findings and experiences of efficiently using the component framework and set of software tools
Efficient Deadlock Avoidance for Streaming Computation with Filtering
In this report, we show that deadlock avoidance for streaming computations with filtering can be performed efficiently for a large class of DAG topologies. We first give efficient algorithms for dummy interval computation in series-parallel DAGs, then generalize our results to a larger graph family, the CS4DAGs, in which every undirected cycle has exactly one source and one sink. Our results show that, for a large set of application topologies that are both intuitively useful and formalizable, the streaming model with filtering can be implemented safely with reasonable compilation overhead
Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: a thermo-magnetic Curie-switch
We investigate a novel type of interlayer exchange coupling based on driving
a strong/weak/strong ferromagnetic tri-layer through the Curie point of the
weakly ferromagnetic spacer, with the exchange coupling between the strongly
ferromagnetic outer layers that can be switched, on and off, or varied
continuously in magnitude by controlling the temperature of the material. We
use Ni-Cu alloy of varied composition as the spacer material and model the
effects of proximity-induced magnetism and the interlayer exchange coupling
through the spacer from first principles, taking into account not only thermal
spin-disorder but also the dependence of the atomic moment of Ni on the
nearest-neighbor concentration of the non-magnetic Cu. We propose and
demonstrate a gradient-composition spacer, with a lower Ni-concentration at the
interfaces, for greatly improved effective-exchange uniformity and
significantly improved thermo-magnetic switching in the structure. The reported
magnetic multilayer materials can form the base for a variety of novel magnetic
devices, such as sensors, oscillators, and memory elements based on
thermo-magnetic Curie-switching in the device.Comment: 15 pages, 5 figure
The Cyclops Vision System
Cyclops is a distributed real-time vision system. It is real-time as for most vision tasks, it can be configured with enough processing nodes as to allow an update rate of 60 Hz with a maximum latency of 1/30s. This allows the system to be used directly as a feedback sensor for motion control. Even though Cyclops was built originally for tracking objects in 3D at 60Hz, it offers great flexibility. It can be configured to attack many vision tasks at much higher rates than was previously possible with systems that are up to an order of magnitude more expensive.
For more information: Kod*la
Germanium Detector with Internal Amplification for Investigation of Rare Processes
Device of new type is suggested - germanium detector with internal
amplification. Such detector having effective threshold about 10 eV opens up
fresh opportunity for investigation of dark matter, measurement of neutrino
magnetic moment, of neutrino coherent scattering at nuclei and for study of
solar neutrino problem. Construction of germanium detector with internal
amplification and perspectives of its use are described.Comment: 13 pages, latex, 3 figures, report at NANP-99, International
Conference on Non-Accelerator Physics, Dubna, Russia, June 29- July 3, 1999.
To be published in the Proceeding
- …