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Cycles, L-functions and triple products
of elliptic curves

By Joe Buhler at Portland, Chad Schoen') at Durham and Jaap Top at Groningen

Abstract. A variant of a conjecture of Beilinson and Bloch relates the rank of the
Griffiths group of a smooth projective variety over a number field to the order of vanishing
of an L-function at the center of the critical strip. Presently, there is little evidence to
support the conjecture, especially when the L-function vanishes to order greater than 1.
We study 1-cycles on E3 for various elliptic curves E/Q. In each of the 76 cases considered
we find that the empirical order of vanishing of the L-function is at least as large as our
best lower bound on the rank of the Griffiths group. In 11 cases this lower bound is two.

0. Introduction

Let K be a number field and let W (or W if we wish to emphasize the base field) be

a smooth, projective, geometrically irreducible K-variety. The free abelian group generated

by scheme theoretic points of codimension r is denoted Z"(W) and called the group of

codimension r cycles on Wy. We write Z"(Wy),,, (respectively Z" (W), Z"(Wi)pom) for

the subgroups of cycles which are rationally (respectively algebraically, homologically)
equivalent to 0, so that

Z" (W)

S Z"(Wdaig © Z" (Widnom = Z"(Wy) -

rat alg

The purpose of this article is to test numerically some highly speculative conjectures (called,
perhaps more aptly, “recurring fantasies” by Bloch [BI]) concerning the following groups
of cycle classes:

CH (Whom = Z" Wlhom/ Z" (Wi)ea  and - Griff " (Wg) := Z" (Widhom/ Z" (Wi)arg -

1) Second author partially supported by the NSF.

7 Journal fiir Mathematik. Band 492
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We begin with
Recurring fantasy 0.1 (Beilinson [Be], Bloch [BI]).
rank CH"(Wy)pom = Ord,_, Ly (H?*" ~Y(W), 5) .

An attractive feature of 0.1 is that it raises the distant but tempting possibility that
there is a relatively simple and occasionally computable formula for the left hand side.
The L-function on the right is defined by an Euler product that converges to a holomorphic
function for Re(s) > r + 1/2. However it is conjectured to have an analytic continuation
to an entire function. In some instances this conjecture has been verified and the right
hand side of 0.1 is computable.

When r =1, CH"(Wy)pom = Pic®(W;), and Griff" (W) = 0; in this case 0.1 has received
much attention. The case that K= Q and W is an elliptic curve was considered 30 years
ago by Birch and Swinnerton-Dyer [B-Sw]. If W is a modular elliptic curve and the right
hand side of 0.1 is at most 1, then 0.1 has recently been shown to hold [Gr]. Even when
the right hand side is > 1 there is numerical evidence in favor of the conjecture [BuGrZa],
[Br-Mc].

When r > 1, there is much less evidence for 0.1. We will investigate the case when
r=2and W is a threefold defined over Q. In order to eliminate, as much as is possible,
phenomena which are explainable in terms of cycles of codimension one, we replace W
by a motivic factor, M, which is defined using correspondences which annihilate all level
one Hodge substructures of H*(W(C),Q). In this situation we have (cf. [Bl])

Recurring fantasy 0.2. -
rank Griff2(M) = ord,_, L(H3*(M),s).
As a test case for 0.2 we consider the following situation: E/Q is an elliptic curve,
W=E3 PeZ3(WxgW)is a correspondence satisfying P, H>(W) ~ Sym®H"'(Eg) and
P?=3P. Then M = (Wy,41P) is a Chow motive in the sense of [Mu]. The cycle class

groups and cohomology groups of M are defined by applying the projector to the corre-
sponding groups of W. For example,

Griff?(M) ® Q:= P, (Griff>(W)® Q) and H'(M,Q)= P, H (W,Q).

Associated to the third cohomology of M is a conductor, N. Standard conjectures imply
that

A(H*(M),s):=N*2Q2n) I (s)[ (s —1) L(H3(M), s)
is an entire function which satisfies a functional equation
0.3) A(H3(M),s) = wA(H*(M),4—35), we{+1}.

This conjectured analytic continuation and functional equation have been proved by Gross
and Kudla [Gr-Ku] when the level of the elliptic curve is square-free (so that by Wiles-
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Taylor, it is modular). We shall not, however, restrict ourselves to this situation. Instead,
for each test curve E we give numerical evidence, although no proof, that (0.3) holds.
Then we ask the computer to evaluate the derivatives LY (H3(M),2) for j =0 until it
finds one which appears to be non-zero. The numerical evidence is very convincing and

gives us the probable or, as we will sometimes say, the “‘empirical” order of vanishing of
L(H3(M),s) at s =2.

In choosing test curves, we have concentrated on plane cubics of the form
E;: y’z=(a>— 4 x>+ QQa*—4a)x*z+ (a* — 4) xz?,

with ae Q and a¢ {—1,+2,0,—3,—3/2}. Such curves are modular (Proposition 7.4).
Furthermore we have a systematic method for constructing one, and in some cases two,
classes in the Griffiths group of the motive M. Let Rnk denote the rank of the subgroup
of Griff2(M) which these classes generate, and let Ord denote the empirical order of
vanishing of L(H3(M),s) at s =2. A difficulty in computing Ord which we encountered
frequently was that for many choices of the parameter a € Q the conductor N was so large
(N >10'?) that the L-series calculations could not be done to the desired precision (10~ °)
in the time available. No similar difficulties were encountered in the computation of Rnk.

The following table is a rough summary of our calculations. It combines results for
76 curves of the form E,, and 16 curves of low conductor (chosen to test our programs,
and to test hypotheses on the conductor N) for which we had no information on the
Griffiths group. In the following table the entry in row Rnk and column Ord is the number
of curves with lower bound Rnk on the rank of Griff 2 (M) and empirical order of vanishing
Ord.

Table 0.4. Summary of results.

Rnk\Ord 0 1 2 3 4
0 9 4 3 0 0
1 0 33 27 5 0
2 0 0 6 3 2

The conjecture 0.2 predicts that the entries below the main diagonal should be 0,
which is certainly consistent with our calculations. If the two sides of 0.2 had nothing to
do with each other, this would be a surprising result.

We now give a brief outline of the contents of the individual sections. The first six
are devoted to computing the lower bound on the rank of Griff>(M).

Section 1 recalls the definition and basic properties of the cycle class map for a
smooth variety W over a field k of characteristic + /:

0.5) cly: CH (Wom = H' (G, H*" ™1 (W3, Z,(1)) -

This map is our main tool for showing that a given element of CH"(W,)yom 1S non-zero.
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The Griffiths group, Grift"(W;) is discussed in §2. In particular it is shown how to
use (0.5) and correspondences to detect non-trivial elements in the Griffiths group.

Although we are primarily interested in varieties defined over @, the actual com-
putations with (0.5) will involve reducing modulo a prime of good reduction. When
H? ~1(Wg ,Z,(r) is torsion free there is a diagram,

0.6)  CH (Wlom - CH' (Wa,hom e CH' (We nom
clog clog, l clos, l
-1
H (Gg, H ' (Wa, Z,(0)) —» H'(Ga,, H**(Wa () —— H'(Ge, HY (W, Z,(r))) ,

in which sp is the specialization map and & is the restriction map which results from
identifying H>"~' (W, Z,(r)) with H?>"~*(Wg,_, Z,(r)) via base change isomorphisms [Mi],
VI1.4.2. Section 3 is devoted to proving that the second square commutes. The first square
commutes by 1.9 (5).

After these generalities the varieties, E, and W, = E2, and the motive M, = (W,,% P)
are introduced in §4. There is a genus 3 curve C, and a map ¢: C, » E.. We define
Z,=0(C,) —[—1],0(C,) and study the cycle class P, £, € CH?*(M,),,., by means of (0.5).
Now cl, (P, Z,) is not easy to compute directly, essentially because P, H 3(W,q @,(2)) is
an irreducible Galois representation with the property that for any curve 7/Q and any
correspondence I'e Z2(W, xqT) we have I, P,H*(W,5, @,(2))=0. Upon reduction
mod p, E, acquires complex multiplication and the Galois representation P, H? (W,’,Fp ,Q,(2)
is reducible. In fact there is a correspondence I'e Z Z(W;[Fp X E,¢,) and a commutative
diagram,

(07) P* CHZ(VVaIFp)hom — CHl (Ean)hom ® Zl
Clol clo®l1 ~
H Gy, B, H* (W4, 2,(1)) —~ H' (G, H' (Ese,, Z,(1))

in which the lower arrow is non-zero for appropriate choice of / and p. Since
H'(Gq. P, H*(Wa, 2,(1)))

is frequently torsion free (4.8), the problem of showing that cl,(P, Z,) has infinite order
has been reduced by (0.6) and (0.7) to the conceptually simpler problem of showing that
the element I, P, 5, € CH' (E,g )yom ® Z, is non-zero.

Although the computation of I, P, Z, involves nothing more than points on an elliptic
curve over the algebraic closure of a finite field, it is nonetheless computationally non-
trivial. The methods used to evaluate I, P, =, are discussed in § 5.

The sixth section focuses on an isogeny ¢: E_;_, — E,. It is defined over Q for
infinitely many values ae Q. Using ¢*: E3,_, - E}, we move P,E_;_, from W_;_, to
W,. With the help of this second cycle we verify that rank (Griff>(M,g)) = 2 for infinitely
many a € Q. This completes the discussion of the Chow groups.
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‘The computations of the leading terms of the L-series at the central point are discussed
in §7. The basic idea is that the functional equation implies that the value (or leading
term) of the L-series can be expressed in terms of sums involving special functions related
to K-Bessel functions. We discuss the computation of the coefficients of the L-series, and
the computation of the values of the special functions.

Section eight is devoted to showing that the conductor of M is well-defined and
readily computable. In the case of the curves E, we use this to verify a remarkably simple
relationship between the conductor of M and the conductor of E, that was first noticed
empirically.

Finally, in the last section we give three different tables summarizing our various
computational results.

The recurring fantasies 0.1 and 0.2 have also been investigated in the context of com-
plex multiplication cycles on Kuga-Satake varieties (see [Bes], [Br], [Ne1], [Ne2], [Sch]
and [Zh]). These cycles are defined in modular terms and seem to exhibit behaviour
analogous to Heegner cycles on modular elliptic curves. In particular when the L-function
vanishes to order greater than one, it seems plausible that averaging Heegner cycles over
the Galois group always produces a cycle which is torsion in the Chow group. By contrast
the non-modular cycles studied here give elements of infinite order in the Chow group
even when the L-function vanishes to high order. In particular they provide the first
evidence for 0.2 when the order of vanishing is greater than one.

This paper is a generalization of [Bl] which treats the case of the CM-elliptic curve
E,. Many essential ideas which play a role here appeared for the first time in [Bl]. We
have also borrowed from [T] where the remaining cases for which E,/Q has CM-type are
investigated. The projector Q in §4 was borrowed from Gross [ Gr-Sch]. The specialization
technique of [BI] and (0.6) has a geometric precursor (cf. [Ce]).

We thank S. Bloch and B. Gross for help and encouragement. One of us, Top, thanks
Bert van Geemen who suggested studying the case that E, has complex multiplication as
a Ph.D.-dissertation topic. Finally we thank the referee for suggesting several improve-
ments.

Notations.

A[l"] = Ker: 4 ", 4 where 4 is an Abelian group.
A*]1= 40"

k = separable closure of the field k.
G, = Gal(k/k).
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1. Preliminaries on the cycle class map

Let W be a smooth variety of dimension d over a field k. For each prime / distinct
from the characteristic there is a cycle class map [BI], §1,

(1.1) ol: Z (W) - lim H> (W, Z/1"(r)) = H> (W, Z,(r)).
which annihilates Z"(W),,,. Write k for a separable closure of k. Composing (1.1) with

the map on cohomology induced by extension of scalars gives rise to the familiar cycle
class map [Mi], VIL.9,

(1.2) clg: Z'(W) » H* (W Z,(r) .
Using (1.2) for varying / we may define

(1.3) Z"(W)pom = Ker[Z"(W) » [ H¥ (W, Z,(n)].

I+ char(k)

In this paper we shall make use of a cycle class map
(1.4) cly: Z"W pom = H' (G, H 1 (Wi, Z/17(M))
and the inverse limit

(1.5) cly: Z"(W)yom = limH ' (G, H* =1 (W, Z17(r))
~ H'(G, H” ' (W, Z,(n)) -
The cohomology group on the right is computed with continuous cochains where
H? ~Y(W;, Z,(r)) has the inverse limit topology [Ta]. This map was considered by Bloch
in the paper which forms the inspiration for the present work [BI]. Bloch constructed (1.4)
from (1.1) using the Hochschild-Serre spectral sequence (see also [Ra]). We use an alter-

native construction for (1.4) by means of extensions [J], §9. To describe this begin with
ZeZ" (W)pom- Write | Z| for the support of Z and define

(1.6) HZ (W, Z/1"(r)o = Ker [H (W, Z]1"(r)) » H* (W, Z/1"(n))] .
By purity [Mi], VI.9.1,
HY  (WeZ)17() = 0.
There results a short exact sequence of G,-modules,
(1.7) 0 > H> Y (W, Z/1"() » H> (W~ I|Z]) Z2/1"(r)
- HY (Wi, Z]1"(r) = 0.

An element of
EXty ime(Z/1" H* = (W, Z]1"(r)))
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is obtained from (1.7) by pull back with respect to the map Z/I" - HY (W, Z/1"(r)),
which takes 1 to the fundamental class [Z] of Z [Mi], VL. 6. Via the canonical identification,

(1.8)  Extyney(Z/I", H* Y (W, Z/1%(r))) ~ HY (G, H* Y(W,,z/I"(r)),

this element is taken to 6 ([Z]), where 6 is the first coboundary in the long exact G,-coho-
mology sequence associated to (1.7). The Hochschild-Serre approach and the extension

approach give rise to the same map, cljj, at least up to a factor +1, which we shall ignore
[, 9.4.

Proposition 1.9. (1) clg is functorial with respect to smooth pullback in the category
of smooth k-varieties.

(2) clg is functorial with respect to proper direct image in the same category.

(3) Given Z'e Z*(W) define Z3.(W )yom t0 be the subgroup of nullhomologous cycles
all of whose components meet Z' properly. The following diagram commutes:

Z5 (W )hom —Z Z™5 (W yom

cl’{,l cl{;l
HY Gy H¥ (W 2)17(r)) =S (G B2+ 251 (W 2171 + )

(4) cly annihilates cycles rationally equivalent to 0.
(5) clf is functorial with respect to extension of the base field.
(6) Let W' be smooth and W smooth and projective over k. Then a correspondence

TeZ**s~"(W x W’) gives rise to a commutative diagram:

CH" (W )yom —L CH*(W')yom

cly l cly l

H' (G, H* " (W ,(n)) 202, 51(G, H> (W, Z,(5))) -

(7) Let W/k be smooth and projective. When r =1 the cocycle § (Z) may be represented
by the crossed homomorphism G, — Pic(W;)[I"], 6 - D — oD, where I"D ~_, Z.

Proof. (1) This follows easily.from the extension definition and the functoriality of

the cycle class map to local cohomology with respect to pullback by smooth morphisms
[Mi], VI.6c, 9.2.

(2) By Poincaré duality (1.7) may be rewritten in terms of homology [J], 9.0.1. The
assertion follows from the functoriality of the fundamental homology class with respect
to proper direct image.

(3) See [J], 10.6.
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(4) A cycle on W which is rationally equivalent to zero may be written as
pry. (- pri.(2)), where I'e Z(P! x W), ze Z'(P'), and I" meets pr (z) properly. Since
H'(PE,z/1"(1)) ~0, (4) follows from (1), (2), and (3).

(5) Both (1.7) and the cycle class map to local cohomology are functorial with respect
to extension of the base field.

(6) I, (2):=pry.(I" pr(z)). When pri (z) meets I" properly, the assertion follows
from (1), (2), (3). In general one may replace pr*(z) by z' in the same rational equivalence
class such that I'- z' is well defined. Furthermore the rational equivalence class of the
intersection is independent of the choice of z’ [Rob]. The assertion follows from (1), (2),
(3), and (4).

(7) Define

(1.10) A, = Ker[K(W)* E(W)*" -2 Div(W); /1" Div(W);] .

For a proper closed subset, Z < W, H} (W, Z/I"(1)) ~ 0 (purity) and the sequence
0 - H' (W, Z/1I"(1)) » H' (W= 2Z)p. Z/1"(1)) - HF (Wi, Z/17(1))

is exact. Taking the limit over all such Z and using H' (k(W), Z /1" (1)) ~ k(W)*| (k(W)*)""
gives rise to an identification

Hy =~ H' (W, Z/1"(1)).
Let (Div 4 (W;)/1"), denote the group of divisors on W;, with Z/I"-coefficients, whose
class in the cohomology group H?(Wj, Z/I"(1)) vanishes and whose support is contained
in |Z|. When r =1 (1.7) may be rewritten as
1.11) 1o Ay > Ay 1z~ (DiVm(I’V,;)/l")O - 0.

Now J(Z) is represented by the crossed homomorphism, G, —» Sy, ¢ — of/f, where
fek(W)* and div(f) = Z — ["D. The assertion follows from the isomorphism

1
Ay = Pic(W) "], h— 5 div(h).

Lemma 1.12. Let k be a finite field and | a prime distinct from the characteristic of
k. Then the map cly: CH(W,)pom ® Z, = H'(G,, H' (W}, Z,(1))) is an isomorphism.

Proof. The second map in the sequence,
CH'(W) ~ H'(W,,G,,) > H' (W, G,)%,

is an isomorphism by Hilbert’s Theorem 90 and the triviality of the Brauer group of k.
Kummer theory gives an identification

(H' (W, 6,)[1°])% ~ H' (W, Q,/Z,(1))*.
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By [Co-Sa-So], p. 744, there is an exact sequence
(1.13) 0> H'(W,z,(1)
— H' (W, Q1) —— H' (W, @)/Z,(1)) - H* (W Z,(1)) .

The preceding isomorphisms identify the torsion group, CH ' (W,),..,. ® Z,, with (im (w))°*.
The coboundary map associated with (1.13),

(1.14) (im (@))% - H'(G,, H' (W Z,(1)))
is an isomorphism because 1 is not an eigenvalue of Frobenius operating on H'(W;, Q,(1))
when i€ {0,1}. It follows from the construction of (1.13) that the map (1.14) agrees up to
sign with lim applied to 1.9(7) and hence with cl,.
—
2. Preliminaries on the Griffiths group
Let W/k be a smooth projective variety of dimension d. Given a smooth projective
curve X/k and I'eZ"(X x W) whose components are flat over X, there is a map
I,:Z'(X) » Z"(W) defined by I,z = pry..(I'- pr}(z)). Since the cycle class map (1.2) is

compatible with correspondences [Fu], 19.2.7, we get a map

F* . ZI(X)hom - Zr(W)hom .
Define

(21) Zr(W)alg = Z F* (Zl(X)hom) < Zr(W)hom

and

GHfl" (W) = Z" (W o | Z" (W )y -

The sum is taken over all pairs (X, I') as above. We call Griff" (W) the Griffiths group of
codimension r cycles on W.

Lemma 2.2. Suppose k = C. Suppose furthermore that a correspondence
PeZ'(Wx W)

is given with the property that the r + 1-level of the Hodge filtration, F**' P, H* ' (W (C)),
does not vanish. If

(1) the rational Hodge structure P, H*"~*(W(C)) is irreducible, or
(2) P,H* ~*(W;, Q,(r) is an irreducible G-module,

then
(Cloo P ®1: Z" (W )yom ® @ » H' (G, H (W4, 2,()) ® Q,

factors through Griff" (W) ® Q,.
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Proof. The non-vanishing of the r + 1 level of the Hodge structure implies that for
each curve X/k and each correspondence I'e Z"(X X W),

P, oI, (H'(X(C)) + P,H* Y (W(C)).
As the comparison isomorphism between étale and Betti cohomology respects cycle classes,
P, o L(H'(Xg, Q1) * P, H> =1 (W, Qu(r) -
Using either (1) or (2) we conclude P, o I, (H'(X;, Q,(1))) = 0. Thus
Clo(Py I, (2! (X om)) @1 = By I, (el (2} (X o)) ®1 = 0.,
which proves the lemma.

Example 2.3 (cf. [Gr-Sch]). Let k = C, (E, e) an elliptic curve over k, W= E3. For
each subset T< {1,2,3} let p,.: E® —» E'T! denote the projection obtained by omitting the
factors not in 7. For example, p,3(x;, X,,X3) = (X, X3). ps: E* — Spec(k) is the structure
map. Define inclusions g, : E!T! — E3 using the neutral element e to fill in the missing
coordinate. For example, q,,(x,, x,) = (x,, e, x,). Let O denote the graph of the morphism
qreopr: W — W, and define

0=013-012-013- 03+ 01+ 0, + 23— 0y
as a 3-cycle on W x W. Then Q gives rise to the endomorphism
(9123°P123)% = (q12° P12)y — - + (99 Po)s
of Z'(W) respectively H (W, Z,(-)).

Denote by 7: W — W the map (x,, x,,x;) = (x,,x3,X,). Define two new self-cor-
respondences of W by

T=Id+1t+12,
P=T-0Q.

Lemma 2.4. (1) As correspondences T, Q, P are linear combinations of endomor-
phisms of the abelian variety W.

(2) As correspondences T* =3T,Q0*=Q, P=Qo-T, P*=3P.
(3) P H? (W, Q) ~ Sym> H' (Eg, Q).
(4) O, H,(W, Z,) =0.

Proof. The proof is straightforward. In (3) note that the Kiinneth formula allows
one to view the third symmetric product as a direct factor of H*(W;, Q).
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Remark 2.5. The pair (E3, 4 P) constitutes a Chow motive over @ [Mu], 1.2, which
we denote by M. The Chow group tensored with Z [4] (respectively the cohomology with
Q,-coefficients) of M is obtained by applying the projector § P to CH(E®) ® Z[4] (respec-
tively to H'(E3, Q). It follows from 2.4 (3) that L(H3(M),s) is the L-series for the
representation of the Galois group in Sym3 H!(E, Q).

Lemma 2.6. Let k = C. If End(Ey) ~ Z, then (W, P) satisfies the hypothesis (1) of
2.2. If k is a number field, then the hypothesis (2) of 2.2 is satisfied as well.

Proof. (1) Write V for the Hodge structure H'(E.). The Mumford-Tate group of
V is GL(Jg). Equivalently, the Hodge torus ¢ : R¢ z G,, = GL(Vg)is not a subtorus defined
over Q. The third symmetric power representation on GL(Jg) has kernel p,Id. The inverse
image of a maximal subtorus of GL(Vg)/u; which is defined over Q is again a maximal
torus defined over Q. Thus the image of the Hodge torus under this representation is not
defined over Q. Its Q-Zariski closure is GL(V')/u5. The assertion follows since Sym?3 V' is
an irreducible GL(V')/ u5-representation.

(2) By analogy with (1) it would suffice to know that the Lie algebra of the image
of the Galois representation on the Tate module of E becomes, after tensoring with Q,,
isomorphic to gl,(Q,). That this is indeed the case is proved in [Ser], p. IV-11.

3. Preliminaries on specialization

Let K be a non-archimedean local field with integers @ and residue field k. Let K be
a separable closure of K, O™ the integral closure of ¢/ in the maximal unramified extension
of K, S = Spec(0) and S™ = Spec(0™). Let p: # — S be smooth and projective. Assume
that the generic and special fibers, Wy and W, are geometrically integral varieties. Define
Px=Plw, and p,:=ply,. Write I < G, for the absolute Galois group of the maximal
unramified extension of K. Then G /I ~ G,. Fix a prime / distinct from the characteristic
of k. Base change isomorphisms [Mi], VI.4.2, give rise to a sequence of isomorphisms

Hzr_l(VVE’Z/l”(r)) = R2r—1p* Z/l"(r)]Spec(E) = Rzr“‘p*z/ln(r)ISpec(lz)
~ H¥ =Y (Wi, Z/17(r))

which are equivariant with respect to the operations of G, and Gy, since I acts trivially on
the right hand side. Applying 11_111 and observing that cohomology commutes with inverse
n

limit in the situation at hand [Ta], 2.2 gives a restriction homomorphism,
$: H' (G, H* (W, Z,(n)) — H' (G, H> 7' (W, Z,(1)) -

Proposition 3.1.  Suppose that H*"~' (W, Z,) is torsion free. Then 3 is an isomorphism
and there is a specialization map, sp, on Chow groups such that

CH"(Wg)hom = CH" (Wnom

! _ !
H' (G, H (W, Z,(r)) —— H'(Go, H¥ (W4, Z,(r)))

commutes.
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Proof. To see that 3 is an isomorphism consider the exact sequence

0 > HY(G, H* " '(W,, Z/1"(n)) = H' (G, H* ' (Wi, Z/1"(n)))
— Hom (I, H> ~ (W, Z/1"(r))%) .

The sequence remains exact after applying llr_n As cohomology and ll_rg commute here

[Ta], 2.2, § will be an isomorphism if H?"~!(Wg, Z,(r))% = 0. Since H?"~*(W;, Z,(r))
is torsion free, the assertion follows from Deligne’s theorem which implies that 1 is not
an eigenvalue of the action of Frobenius on H?" ™! (W, Q,(r)).

Consider the diagram
CH' (W) <= CH' (W) —— CH"(W))
in which j* is flat pullback and i' is intersection with the closed fiber. The map
sp:=i'ol: CH (W) - CH'(W,)

is independent of the choice of a left inverse, £, of j* [Fu], 6.3.7, and is called the
specialization homomorphism. In [Gro-De], 2.2-3 a cycle class map

ci: Z (W), » H¥ (W, Z/1"(r))

is defined, where Z"(#"), = Z"(#") is the subgroup generated by integral subschemes which
are flat over S. The diagram ‘

i

VAIC P LR CH'(W,)
o or |

H*(W,Z]1"(r) — H*(W,,Z]1"(r))

commutes [Gro-De], 2.3.8(ii), and the map on cohomology is an isomorphism [Mi],
VI1.2.7. Thus clg(z) =0, if z~,,, 0 on #. We may extend clg to all of Z"(#") by sending
cycles supported on the special fiber to zero. This gives rise to a commutative diagram

.
1

3.2 CH" (W) PAS CH'(W") — CH" (W)
olg | og | oi |
H*(W,Z/I"0)) ——  H*(WZ/I"())  —— H*(W,Z/I"()

) s | 7 |

HY (We, Z/1"(n)°% «=— H> (W x5S™, Z/1"(1)% —— H> (W, Z/1"(r)%

where the isomorphisms are consequences of the standard base change theorems [Mi],
VI1.2.7 and 4.2. We may view the maps yx, s, and y, as coming from the Leray spectral
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sequences for py, p, and p,. Since EL2""! < E}2"~! for these spectral sequences, (3.2)
gives rise to a diagram

P i

(3)  CH' (W YN CE W) — CH (W)

l l l

" )
H' (Spec(K), R¥ ™ pyaZ|I"(r)) H'(S,R*™'p,Z|1"(r)) —=— H'(Spec(k), R*"~'p, Z/I"(r)) .

The left hand square commutes because the Leray spectral sequence is functorial for base
change by an open immersion. It follows from the proper base change theorem [Mi],
VI1.2.7 that the individual terms in the spectral sequences for p and p, are canonically
isomorphic. Thus the right hand square commutes as well. By Hensel’s lemma [Mi], I. 4.4,
etale covers of Spec (k) lift uniquely to etale covers of S. This leads to an explicit description
of the map ¢, ! on Cech cohomology. The standard isomorphism between the Cech coho-
mology of an etale sheaf over the spectrum of a field and Galois cohomology [Mi], III. 2.6,
allows us to identify lim (¢, Yo j*) with 9. Finally we remark that the left and right vertical

maps in (3.3) may be identified with clf, by [J], 9.4.

4. The test varieties and their cycles
In this section we apply the methods described above to certain cycles on threefold
self-products of certain elliptic curves defined over Q. Our main result, Theorem 4.8, is a
criterion for when such a cycle has infinite order in the Griffiths group in terms of the

rational equivalence class of a divisor on the curve reduced modulo a prime of good
reduction.

We work with the product of elliptic curves, W,:= E2, where ae Q, a¢ {—1, +2},
4.1 E;: zy*=(a*—4)x*+ (2a*—4a)zx* + (a* — 4) 2% x.

The neutral element in the group law on E,(Q) will be the point e = (0:1:0). Following
ideas in [T], the non-singular genus 3 curve

C,: x*4+y*+z4+a(x?y?+y*z22+22x*) =0

may be used to construct an element Z, € Z?(W,g)pom- In fact consider the composition
of degree two maps

(4.2) n:C, 5 E 25 E,
where E, is the smooth, projective model of
4.3) w2 = (a2 —4)v*+ (2a’ —4a)v* + (a* - 4).

The map y, is the canonical quotient morphism associated to the involution

(x:y:2) > (—x:y:2).
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In terms of coordinate functions
4.4) wouy=y/z, vop =Q2x*+ay*+az?)/z?;

and
X/zopy =02, ylzop, =uvw.

The permutation of the coordinates o € Aut(k[x, y, z]) defined by
Xo@0 =Yy, Yoo =2z ZoO0=2X
gives rise to an automorphism of P2 which stabilizes the curve C,. Define

4.5) 0:C,»> W, by g=(m,mno0,m00?),
and

(4.6) Ea=0(C) —[—1],0(C,).

Note that =, € Z?(W,),., since —1 € Aut(E?) acts trivially on H*(W,(C), Z,(2)).

Let P be the correspondence introduced in 2.3. In order to state the main theorem
about the class of P, Z, in the Griffiths group Griff? (W,) we introduce some notation. Fix
a rational prime p > 3 where E, and C, have good reduction (i.e., a ¢ {—1, +2} mod p).
Write S = Spec(Z,), and let #; &, € be smooth, projective models for W,, E,, and C, over
S. As ae @ will not vary, we frequently drop it from the notation. The special fibers will
be denoted Wy , Eg, Cp, . Let Fe End(Eg)) denote the Frobenius endomorphism. Write
D = W, (respectively I' = (W x E);, ) for the image of

E} - E, (a,b)m (a,F(a),b) (respectively E? — E*, (a,b)w (a,F(a),b,b)).
The map I, : CH*(W;,) - CH'(Ej,) satisfies
4.7) I (z) =p3,(D-2).
Given an abelian variety 4 with neutral element 0 over a field &, define

o:CHy(A4,) » CHy(A)pom» by a(c) =c—deg(c)0.

If k is finite, CHy(A4,)yom 18 @ finite group and we define for each prime /, o, to be the
composition of a with projection to the /-primary component.

If E, has good reduction at a prime g, write a, € Z for the trace of the Frobenius
endomorphism, F e End(E,g).

Theorem 4.8. (1) Let [ > 3 be a rational prime with (I,p) =1. If

% (F* Y (Ca!F,,)) € CHO (Eale,,)hom
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is not zero, then
cly (P Z,) € H'(Gq, B, H*(W, 4, 2,(2))) ~ H'(Gg, Sym*H' (E, 5, Z,))(2))
is not zero.

(2) Let g be a rational prime, distinct from | and p, such that E has good reduction at
q. If | does not divide (q — a, +1)(¢*> + q — a] — 3a,q), then H'(Gg, Sym>*H'(E, g,Z,)(2))
is torsion free.

(3) Ifa¢ {£2,—1,0,—3,—3/2} and the hypotheses in (1) and (2) are satisfied, then
the class of P, E, in Griff>(W,q) is of infinite order.

Proof. (1) To show cly(F, £) # 0 we may extend scalars to @, and show 1.9 (5)
cly(P, Elg,) #0€ Hl(GQP, H3(W@p, Z,(2))) .
Since P, E|q, specializes to P, B¢ it suffices by 3.1 to show
clo(PEg) +0€ HI(GF,,, H3(W¢p, Z,(2)) .
By 1.9 (3) we further reduce to showing
Lclo (B Eg) =clo(I B Eg) #0€ H‘(GFP, H‘(Eu—:p, Z,(2)) .

By 1.12 it suffices to show that the /-primary component of I, P, Z € CH I(E[Fp),mm is not
zero. The assertion (1) thus follows from the following

Lemma 4.9. «(61,0(Cs))=TI,PEg.

Proof. As the argument involves only computations over the fixed base field, [,
we will frequently drop the subscript [, to simplify the notation. First note

ILPE; =p,,(D-PRE)
=ps. (D (Pe(C)—[—1]1,P,e(0)))
=p3. (D Bo(C)—[—1],(D" B0(0)))
=2p;, (D Be(0))
=2p,, (D 0,T,0(C)) = p3,(6D- Q,0(C)).

In the fourth equality we are using the fact that Q, ¢(C) and hence P, ¢(C) is homologous
to zero (2.4 (4)). To prove the lemma we need only show

(4.10) P3.(D- 0,0(0)) = a(Le(Cy))

which we do by considering the action of the individual components of the correspondence
Q separately.
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First note D - Qy,0(C) =D Q5,0(C) =0 in CHy(W). Also,
DNQ,.0(C)=DnQ,.0(C)=exexe
whence, a(D - Q,,0(C)) =a(D - Q,,0(C)) =0.
To show a(D - Q,;,0(C)) = 0 observe that

D Q,3,0(C) = q23,(q;‘3D 'P23(Q(C)))
= ¢23,(e X E-py3°0(C))
= ¢13,(ex (mo6?), (mo0)*(e)).
Now the desired vanishing follows from
Lemma 4.11.  For arbitrary i and j, a((n o 6*), (n o 67)*(e)) = 0.
Proof. When i=j we must show a(4e) =0 which is obvious. Now ©*(e) is the
degree 4 zero cycle on C cut out by.z=0. As ¢ fixes the rational equivalence class of

n*(e) ~ Op2(1)| we are reduced to the case i =j.

To show a(D - Q,;,0(C)) = 0 observe that

D-Q,;,00C)= 413.(‘]’1*3 D 'Pla(Q(C)))
=q,3,(p(Exe) p,;° 2(0))

= g3, (1, (mo0?)* (@) xe).
The desired vanishing follows from the previous lemma.
By (4.7) equation (4.10) is a consequence of
“4.12) P3.(D - (2(C) = 012.0(0))) = a(p,(D - 2(C))) .
To check that this holds rewrite the left hand side
4.13) D (e(C) = Q,3,0(C)) =D -0(C) = D (g12° P12)50(C).
As D =(q,,° p;,)*D, the projection formula allows us to rewrite the above expression as
(4.14) D 0(C) = (g12°P12)x(D - 2(C)) = (1d — (912 °P12),) (D - 2(C)) .
Now
a((Id = (912 ° P12),) (D - 2(0))) = aex ex (g3 ° p3), (D - (C)) — deg.(D - (C))e)) ,

which implies (4.12). This completes the proof of 4.9 and hence of 4.8 (1).
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(2) Write y and y’ for the roots of the minimal polynomial of the Frobenius endo-

morphlsm FeEnd(E,,). The arithmetic Frobenius acts on H' (E%,» Q) with eigenvalues
~1 (y")"'. The criterion of Zelinsky [Ze], 6.1, for torsion freeness of

H'(Gg, Sym*H'(Eg, Z,)(2))

is that det(f, —1) € Z}*, where f, is the arithmetic Frobenius acting on Sym*H'(Ez , Z,)(2).
Now

det(f,— D=0 -D(O) 3¢ -G g-D(() 'g-1)
=q % (q—a,+1)(¢*+q9—a; —3a,9).

(3) The hypothesis a¢ {+2,—1,0,—3, —3/2} implies that E,q is an elliptic curve
without complex multiplication [T], 3.4.1. By parts (1) and (2) of the theorem

cly(P,E,) € H (Gg, Sym*H (Eg, Z)(2)) ® Q,
is not zero. The assertion follows from 2.2 and 2.6.

Remark 4.15. The case that E, is of CM-type was investigated in [T] using a map
0,:C, = W, [T], 3.4. This map is related to our map g as follows: Let

B:E,—> E,;: B(x:y:z)=(xz:yz:x?)

denote the map which sends a point P to T— P, where T is the point of order 2 on E,
with coordinates (0:0:1). Then

0, = (n, Brna, frna?)

The following lemma shows that it makes essentially no difference whether we study
the cycle &, or the cycle ¢,(C,) —[—1],0,(C,) used in [T].

Lemma 4.16. Let | be an odd prime. Then cl,(Z,) and cly(¢,(C,) — [—1],0,(C,))
span the same submodule of H'(Gg, H*(W,ga,Z,(2))).

Proof. As cycles
[2],(02(C,) — [—11,0,(Cy) = (dlg,, B, B, [2], Z,.

On cohomology [2], acts invertibly and (Id|g_,B,8) € Aut(E?) acts as the identity.

5. Computation of the cycle class

This section describes the final step in the procedure for showing that the nullhomo-
logous cycle P, E, on W,q = E.q has infinite order in the Griffiths group for certain values
ae Q. Theorem 4 8 tells us to look for a prime /> 3 such that «, (I, ¢(C oF, )) is not zero
in CH( MFP)Mm By (4.7), o, (I, 0 (Cyp, )) will be non-zero if the projections of the points
in the intersection D g(C,g,) to E,,L: have a non-zero sum. Although the intersection

8 Journal fiir Mathematik. Band 492
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cycle is defined over [, the individual intersection points may be defined over extensions
of large degree making computer computations difficult. Following [BI], § 3 and [T], § 3.4,
we replace p,, 3(DmQ(CMFp)) by a rationally equivalent divisor each of whose points is
defined over [F,;. This makes computations feasible.

Assume that p is an odd prime. Define a polynomial,
H(@)=1t***2+ at?>?" 4 t?P + at?* + at? + 1,
and the related sets,
H={teF,: H1)=0} and &= {tep: (P’ ?*1=1}.
Evidently & is a subset of the norm one elements in F,;. Also define a morphism
¢:P' - P2,
o((1:1)) = (P2 24P 4 g+ arP* 1 Br+ 2y,

Theorem 5.1. If /=2 and p # | is an odd prime where C, and E, have good reduction,
then
o((#:1)) cE, and at(r*Q(Canfp)) =40,( Y o(¢:1)).

tes¥

Remark 5.2. The sum involves only points defined over F,;. Our computer program
can compute this expression in a reasonable amount of time when p < 200. In the event

that there is no prime in this range for which o, ( Y. @ ((¢:1))) # 0, then we cannot deter-
te
mine whether or not cly (P, Z,) = 0. Fortunately, in the course of our investigations this

situation never occurred. (See however the discussion following Table 9.2 for a related
situation which did occur.)
The remainder of this section is devoted to the proof of 5.1. By (4.7)
% (F*Q(Cafr,,)) = o, (p;,(D- Q(Cutrp))) .

A main step in the proof of 5.1 is to establish

Proposition 5.3.  As divisors on E ¢,

ps.(D- Q(Ca[Fp)) =2 Py
te ¥
where

Prey = (P V2 k()17 +a+at?*?): 13232 e E (F),
and k(1) =1 if tP**P*1 =1 and x(t) = —1 otherwise.
For the proof we need

Lemma 5.4. The intersection ¢(C,g,) N D is transversal.



Buhler, Schoen and Top, Elliptic curves 111
Proof. From (4.4) and (4.5) we have that go(x:y:z)e E2 is given by
(5.5 (O?z:2x%y+ay*+ayz?:2%), (xz22:2y%z+ az® + ax?z: x3),

(x?y:2xz2 + ax®+ axy?: y?)).

It is easy to check that no point (x:y:z)e C,, where one of the coordinates x, y, or z
vanish, maps to D. A point (x: y:1)eP? lies on C, when

(5.6) x*+yt+1+ax?yr+y2+x2) =0,
and by (5.5) it maps to D precisely when

(5.7) y*=x"% and 2x?Py?+ay3?+ay? =2y *+a+ax?)x 3.
Now given (x:y:1) such that (5.6) and (5.7) hold, plug in (x + ¢) for x and (y + ) for
y. Assuming ¢ = 6% = 0, the first equation in (5.7) yields y2? = (x — 2¢)x~ 3. This implies

& = 0. Use this fact when plugging into the second equation of (5.7) to get 46 = 0, whence
0 = 0. The transversality of the intersection follows.

Proof of 5.3. By (5.9)

(5.8) pioo(x:y:1)=(x?y:2x+ax®+axy?:y3).
By 5.4 the divisor p;,(D - ¢(C,,)) is obtained by summing p; > ¢(x:y:1) over all x and
y satisfying (5.6) and (5.7). Use the first equation in (5.7) to write x = ky~? with k = +1.

Also set t = p* and define p, , = (1?2 kQ21P +a+at?*1): 1BP*32) e E (F,). In this
notation

(5.9) P3.(D 0(Cog,)) =2 Y Prns

(t,x)

where the sum is taken over all simultaneous solutions (7, k) of the equations

(5.6") H({)=0,

(5.7) k=1, and 2+4at?* P4 at?’ = QPP 4 arP’ TP 4 ar??),

Lemma 5.10. If (¢, k) is a solution to the system (5.6"), (5.7") then (t, — k) is not.

Proof. If (1,1) is a solution, then (5.7') implies t?**?*! = 1. If (¢, — 1) were also a
solution, then at?**? + at?* + 2 = 0. Multiplying this by 7+ and using t?**P*! =1 gives
the first equation in

(5.11) at’ +a+2tP*'=0 and a+at?P*'+217=0.

The second equation arises from the first by raising to the p'"-power and then multiplying
by t?*1, Subtracting the two equations in (5.11) yields t?(a — 2) (¢ — 1) = 0. We may assume
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a % 2, since the curve E, is singular. The only possible solution is = 1. Plugging back
into (5.11) yields a= —1. As E_, is also singular, the lemma follows.

In order to prove 5.3 it will suffice to show that every root of H(¢) = 0 also satisfies
(5.7"). This will follow if we find 2p + 2 = deg(H) distinct solutions (¢,x) to the system
(5.6), (5.7"). Equivalently, we may check that there are 4p + 4 distinct solutions to the
system (5.6), (5.7). Since D meets ¢(C,,) transversally, this is a consequence of

Lemma 5.12. The intersection number D - 0(Cep,) =4p+4.

Proof. Set ¢ =(n,mo0): C, > E? and write I, = E? for the graph of Frobenius.
Evidently,

I:- &, (C)) =D -e(C,).
To prove the lemma it clearly suffices to verify the following equality of cohomology classes:
(5.13) (L [Cl=4[E,xe]+4[exE]Je H*(ELQ,(1)).

For this consider the automorphisms (1,—1) of E? and u, e Aut(C,) defined by
u(x:y:z)=(—x:y:z). Now the diagram

C, —— E?

M la-n

Ca _L’ Eaz
commutes and (1, —1), acts by —1 on H'(E,) ® H'(E,). It follows that
¢k [CleH*(E,)® H°(E,) ® H°(E,) ® H*(E,).

Since both n and 7o ¢ have degree 4, (5.13) follows. This completes the proofs of 5.12
and 5.3.

To prove 5.1 we need only establish

Lemma 5.14. If [+ 2, then

2“1( Z{ pt.x(t)) = 4“1( Z (p((tl))) .

te

Proof. Let b be a divisor on E,. Then o,(d) =0 in each of the following circum-
stances:

(1) d=T- E,, where T< P? is a divisor, since T E, ~_, 3deg(T)e;

a

(2) =m,;(0:0:1) —m,e, since (0:0:1) is a two torsion point on E, and / =+ 2;

(3) b=[—1],D.
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By (1)

(5.15) 204 ( Z Prxw) = 204( Z Prx) T 20(0, [P']- E,).

te ¥ ted

One checks immediately that

@((1:0) =(0:0:1), @((0:1)=e if a+0, and ¢((0:1))¢E, if a=0,

and that the ideal in k[¢, t~'] defining the subscheme,
(P —{(1:0), 0:D)}) xp2 E, = (P* = {(1:0), (0:1)})

obtained by pulling E, back along ¢, is generated by the polynomial H(¢). We have seen
in the course of the proof of 5.3 that all 2p + 2 roots of H(¢) are simple. By (2)

0‘1(90* [pl] ’ Ea) = <xl( Z (P((ti))) .

te

Now p, . = @((t:1)) if k(t) =1 and p, ., = [~ 11, 0((t: 1)) if k(t) = — 1. By (3) above,
(5.15) is equal to

40,( Y o((1:1).

te

This proves 5.14 and hence 5.1.

6. Griffiths group of rank =2

Up to this point we have been concerned with the problem of how to show that the
cycle class P, =, € Gr?(E2,) has infinite order. In this section it is shown how to use iso-
genies between elliptic curves to produce more cycles and how to show that the resulting
cycle classes are linearly independent. We have been inspired by [N] and [Ba].

Theorem 6.1. Let K be a field of characteristic 2 or 7. Given

aekK, a¢{—1,4£2,-5},

set K'= K(}/(a—2)(a+5)).

(1) There is a degree 4 isogeny of elliptic curves, ¢ : E_,_, = E,, defined over K'.

(2) The conic curve b? = (a — 2)(a + 5) has the parameterization

@by = (@ + 5 =)L Te(? - 1)), r¢{£1}.

Proof. Since (2) is clear, it suffices to verify (1). Sety = 2a(a —2),e =a* — 4,5 = ¢%.
Substituting X =¢ex/z, Y =¢y/z into (4.1) yields the affine model

E,:Y?=X3+yX*+6X.
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Define
E Y?=X(X—y+2e)(X—y—2¢),
and observe that

E,—»E: (X,¥) > (Y*X%Y(© -X?)/X?)

is a degree 2 isogeny with kernel generated by (0,0). Introduce the new variable
U= X—y+ 2¢ so that the equation for E, becomes

E:Y?=U+(y—6e)U*—4e(y—26)U.
Once again take the quotient by the order two subgroup generated by (0,0). This gives

E,—»E, with E:Y*=X3—2(—68)X*+(y+26°X.

32
1(a+5 1 /a+5
y_§<a—2> . x_4—1<a—2>X

transforms the equation for E‘a into the equation for E_;_,. Thus we have described an
isogeny E, > E_;_,. Take ¢ : E_;_, — E, to be the dual isogeny.

The substitution

Define y:=¢3: E3,_, —» E2. Fix a pair of primes, p, /, each greater than 3, such that
E, has good reduction at p. Let u, , denote the order of the element I, ¢(C,,) in the finite
group CH'(E ¢, pom- Write p, , = ord, (u,, ,) for the valuation of u, , at /.

If g is a prime of good reduction for E, write a, € Z for the trace of the Frobenius
endomorphism, Fe End (E;¢ ).

Independence criterion 6.2. Let te Q — {0, +1} and define a= (21> + 5)(t* —1)"".
Choose distinct primes I, p,, p,, q, each greater than 3. Suppose that the following conditions
are satisfied:

(1) [ does not divide (q — a,+1)(¢* + g — a] — 3a,q).

(2) ord,(@)=20anda + —1,+2, or —Smodp;, i€ {1,2}.

(3) g, > 0 for some ie{1,2} and p_5_, , >0 for some i€ {1,2}.
(4) Map, = H-3-a,p, F Ha,p, — H-3-a,p,-

(5) If o, p, =0, then p, , 2 p_5_, , for i+ j. The same holds when a is replaced by
—3—a.

Then P, E, and P,y,E_;_, span a rank two subgroup of Griff?(Ey).
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Proof. The hypotheses on ¢ imply that E, and E_,_, are (non-singular) elliptic
curves which are not of CM-type [T], 3.4.1. Now (1) implies that

H'(Gg, Sym*>H'(E g, Z,(2)))
is a torsion free Z,-module (4.8 (2)). The same is true when a is replaced by —3 — a, since

the eigenvalues of the arithmetic Frobenius acting on isogenous elliptic curves are equal.
By §2 it will suffice to show that the equation

¢ clo (P Ey) + crcly(Py, E_5_,)=0
has no solutions in coprime /-adic integers ¢, and ¢,. By (2), C,, C_;_,, E,and E_; _,

have good reduction modulo both p, and p,. According to 3.1 it will suffice to show that
the pair of equations

(6.3) ¢,0lg(PyBor,) + oClo (P, By gs,) =0, i€{1,2},

has no common solution in coprime /-adic integers ¢, and ¢,. Apply the correspondence
I' of (4.7) to (6.3). Using the equality of correspondences, P,op =y P_,_,, we get

(6.4) ¢y Toncly (R«*Ea[Fpi) +¢ I:I*IP*CIO(P—3—a*E—3—an‘.) =0.

Recall from (4.7) the divisor D for which I, (z) = p;.(D - z) holds for all 1-cycles, z. It is
straightforward to check p*D,=4D_,_,e CH'(E?, - aF,,)» Whence

L, (2) = p3: (D, ,(2)) = Py, (W*D, - 2)
= 4¢*p3*(DT—3—a ’ Z) = 4¢* F—3—a*(z) .
Use 4.9 and 1.12 to deduce from (6.4)
(6.5) 6¢, (xl([:z*g(ca[ﬂ,l.)) = —24c, ¢, o‘z(r—s—a*Q(C—s—an:pi))

Since / is prime to deg(¢), ¢, : CH‘(E_%Q[FPI_)hom ®Z - CH‘(EL,[FP‘_)Mm ® Z, is an iso-
morphism. Taking the valuations of the orders of the elements in (6.5) yields either

(6.6) Mo, p — OTd(cy) = pi_3_, p, —0rd;(c;) > 0
or
(6.7) o p,—o0rd;(c)) £0 and p_5_,, —ord(c,) =0.

Now ged(cy, ¢,) =1 implies ord,(c;) = 0 for some j. By (3), (6.7) does not hold for both
i=1and i = 2. Thus (6.6) holds for some i, say i = 1. By (4), (6.6) does not hold for i = 2,
so (6.7) holds for i=2. Suppose M, , ZH-3-4,- Lhen ordi(c,)=0. By (6.7),
Ho3—qp, =0. Now (5) implies, u, ,, = fi_3_4 p,- Thus ord,(c;) =0 and g, ,, = 0. This con-
tradicts (3) and shows that (6.5) has no solution in coprime integers when u, , 2 U_3_, p,-
If pp p, < B-3-qp, (6.7) implies p, ,, =0, which is incompatible with (5). Thus (6.5) and
hence (6.3) has no solutions in coprime integers.
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Example 6.8. Let te Q be such that t — 4/ 3 has positive valuation at 5, 73 and 137.
Set a= (2t*+ 5)(t* — 1)~ '. Then Griff>(E2,) has rank at least 2.

Proof. Letl=11,q=35,p, =73, p,=137. Then a= —3 — a=1mod 5. One com-
putes easily that Ms(T) =T? — a;T + 5 with a5 = 2. Clearly hypotheses (1) and (2) of 6.2
are satisfied. Our assumptions imply ¢ = 11 mod 73 and mod 137. The entry for t =4/3 in
Table 9.3 indicates that we have performed an intersection computation in characteristics
73 and 137. In fact, this computation revealed p, 3=y 137 =H_3-,73=1 and
H_3_a137=0. By 6.2, the rank of Griff>(E};) = 2.

Remark 6.9. The isogeny ¢ is closely related to the Atkin-Lehner operator for the
universal elliptic curve with a point of order 4. In fact with y, 4, and ¢ as in the proof of 6.1

E,:Y?=X?4+7yX?+6X

has a point of order 4 at (—¢,2¢]/2 — a). Twisting by ]/2 — a gives an elliptic curve E,
(@*—12a—-12)°
(@a+2)*@+1)
space, X;(4), for elliptic curves with a point of order 4. The tautological map from this
moduli space to the j-line has degree 6. It follows easily that we may identify E, with the
universal family of elliptic curves with a point of order 4. The Atkin-Lehner involution
is a > —3 —a and corresponds to a degree 4 isogeny W: E, —» E”,_,, where E”;_, is

the twist of E’,_, by |/—1. Twisting E”,_, by }/—5—a gives E_;_,. Over

Q(a, [/2 —a,|/—a—5), w gives an isogeny E, > E_; _,, which is in fact already defined
over Q(a,|/(a—2)(a+ 5)).

7. Computation of the leading term of the L-series

with a point of order 4 and j-invariant j = — 16 . There is a fine moduli

The L-series Lg(s) of an elliptic curve E over Q is defined by an Euler product

Lg(s):= l—[ LE,p(P_S)—l .

If E has good reduction at p then Lg ,(x) is a quadratic polynomial determined by the
number of points of E over F,:

LE,p(x) =1- aE,p'x+px2 = (1 - apx)(l —-ﬂp'x)’ aE,p = 1 - |E([Fp)| +p'

If E has additive reduction at p then Ly ,(x) =1, and if E has multiplicative reduction at
pthen Ly , =1+ x. It is conjectured (and now, by results of Wiles, Taylor, and Diamond,
known for many curves) that there is a positive integer Ny such that the function

Ag(s) = Ng"*2n)*I'(s) Lg(s)
is an entire function on the complex plane and satisfies a functional equation

Ap(2—5) = wg Ag(s)

for some wye {+1}.
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We are interested in the “symmetric cube” of the L-series of E, which we will denote
S

(7.1)  L(s)=L(Sym’H'(Eg),s) = L(H*(M),s) =[] L,(p™) ' = ¥, -n—';
p n=

1

In order to render this computable, we need to specify the Euler factors L,(x). It turns
out that this can be done easily in terms of the «, and f, above. If E has good reduction
at p then L,(x) is the quartic polynomial

(1= x)(1— a2, x)(1 —a, B2x)(1 — B2 x).

If the reduction of E at p is multiplicative then L,(x) is equal to Ly ,(x). If the reduction
of E at p is additive and is not of type IV or IV* (in the standard Néron-Tate notation)
then L,(x) =1. For the two exceptional types of reduction L,(x) is a quadratic poly-
nomial that can be computed locally by considering a larger field over which the curve
has good reduction; we omit the details since our curves E, never have that type of
reduction.

Using this description of the Euler product for L(s) it isn’t too hard to see that
a,= 0(n32**%) so that L(s) converges for Re(s) > 5/2. It is conjectured that L(s) can
be extended to an entire function defined on the complex plane, satisfying a functional
equation. If the level Ny of the elliptic curve is square-free (so that, in particular, by
Wiles/ Taylor, the curve is modular) then Gross and Kudla, building on earlier work of
Garrett, Piatetski-Shapiro, and Rallis, proved this (see [Gr-Ku]).

The shape of the conjectured functional equation is as follows. There is a positive
integer N, called the conductor of Sym?®H'(Eg), such that

(7.2) A(s)=N"2Q2m)y *I'(s)I'(s — 1) L(s)
is an entire function that satisfies
(7.3) A =wA@d —s), we{+1}.

The conductor N is closely related to the familiar conductor Ny of the elliptic curve; for
instance, in the case in which all primes have multiplicative reduction N = N7. In §8 we
will consider these conductors more generally, and in particular will give a succinct formula
in the case of our curves E=E,.

As one easily verifies (see for instance most of the examples in the tables at the end
of this paper), our curves E, in general do not have square-free conductor. Hence the
results of Gross and Kudla do not apply. However, we do know that the curves E, are
modular, as the following result explains.

Proposition 7.4. For ae Q with a+ —1, +2 the elliptic curve E, given by

yPr=(@®-4Hx>+ Qa*—4a)x*+ (@®*— 4 x

is modular.
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Proof. This follows using the celebrated results of Wiles and Taylor [Wi], [T-W].
As is explained in the proof of Theorem 6.1 above, the curve E, is isogenous (over @ in
our case) to an elliptic curve which has all its points of order 2 rational. As was first noted
by Rubin and Silverberg, a quadratic twist of such a curve has good or multiplicative
reduction at every odd prime, so in particular at the primes 3 and 5. An extension of the
result of Wiles obtained by Diamond then implies that the curve is modular. In fact,
modularity can also be concluded directly from Wiles’ paper, as is explained in [D-K].

Remark 7.5. It is not hard to compute that, for instance when aeZ such that
a%+ —1 and a = —1mod 16, the curve E,/Q is, up to possibly a quadratic twist, a curve
with square-free conductor. Hence knowledge on how the symmetric cube L-series behave
under quadratic twists would suffice to conclude the functional equation in such cases.

In the remainder of this section we summarize the methods that we used to compute
the order of vanishing of, and the leading term of the Taylor series of, L(s) at the central
point s = 2.

Convergent expansion for L (2). We assume throughout that L(s) has an analytic
continuation and that it satisfies the functional equation (7.3). This implies that there are
“rapidly converging” expressions for the leading nonzero term of the Taylor series of 4 (s)
at any complex number s. These formulas take a simpler form at the central point s =2,
and for simplicity we start by stating the formula for L(2).

For positive real x let

F(x) = 2xK,(2)/x)

where K, (x) is the usual K-Bessel function. Standard power series and asymptotic expan-
sions for the Bessel function imply that F(0) =1 and F(x) = O(V;e‘”;) as x goes to
infinity. We now define a function S(#) in which the terms of the infinite series L(2) have
been multiplied by a “‘convergence factor” defined in terms of the special function F(x):

[e¢)

16n%nt
st=7Y %F(%) reR*.
n=1 N

The asymptotics for F(¢) imply that this series converges for all positive ¢. Note also that
formally S(0) is just L(2), though we have no reason to expect that the infinite series for
L(s) converges at s = 2.

With this notation, a special case of our next theorem asserts that for any positive ¢
(7.6) LQ2)=S{t)+wSt™ ).
The general idea of expansions like this can be traced back (at least) to Hecke, and has
been used in a number of theoretical and computational contexts, see [Fr] for a fairly

general description and, e.g., [Lo] for a recent example. We will soon prove a somewhat
more general statement; see [Fr] for another proof.
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In practice one can hope to use (7.6) to “compute” L(2) even if the conjectured
analytic continuation and functional equation are not known to hold, and the precise
values of N or w are unknown. The primes dividing N are the same as the primes dividing
the conductor Ny of the curve, and the exponent on primes larger than 3 is easily determined,
so we have a fair amount of information about N. Thus we can take a good guess at N
and for several values of 1 we compute both S(¢) and S(¢~*). Each value of 7 gives a linear
equation for w and L(2), and we get an overdetermined system of linear equations if we
have tried more than two values of ¢. If the candidate N is not the true value, then the
system of equations for w will be inconsistent. In this case we try another guess for N. If
the equations are consistent and w is equal to +1 (to within a small error), then we have
strong evidence that N and w have been correctly chosen and that the functional equation
(7.3) does indeed hold. Notice that one needs to guess N, but that w is determined by the
computation.

The formula (7.6) is obviously easiest to compute for 7 =1, and in general it is
convenient to not let ¢ stray too far away from 1, so that S(7) and S(¢!) require roughly
the same number of terms. We ended up, for instance, using t =1,1.2,1.4,1.6 to check
the correctness of the functional equation, and the conductor, by the above method.

We applied this process to a number of elliptic curves E, of the form (4.1) before we
noticed that the conductor always obeyed the following simple formula:

(7.7) N=N2

mult Nazdd ’

where Ny, = Ny Noaq and N, (resp. N,4q) is the product of the prime powers corre-
sponding to primes of multiplicative (resp. additive) reduction for E,. In the next section
we will in fact prove a general formula for N which reduces to (7.7) for elliptic curves of
the form (4.1). We do not know a formula for w, unless E has no places of additive
reduction, in which case w is equal to the sign w;, in the functional equation for E. In fact,
the computation of the value of the L-series Lg(s) of E at s =1 is a much simpler version
of the above computation (Bessel functions are replaced by e™*, and many fewer terms
are needed for convergence). The coefficients a, of L(s) can be described in terms of the
coefficients of L;(s), so we checked the correctness of the a; , by first computing Lg(1).
As a byproduct we computed w;. When E has multiplicative reduction at all primes we
could also verify that (the empirical) values of w and w, were equal.

Leading Taylor series terms. Set ¢ = Vﬁ/ 162 so that we are assuming
AG) =T M(s—1)L(s) =wA(@d —s)
as above. We will suppose that L(s) vanishes to order at least m at the central points s = 2.
Let b be a positive real number and let

1 4= [(s+2)T
F"‘(x):_i;z—i j‘ _(i_T),_Qx

b—iw

“ids .
s
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The integrand vanishes rapidly in vertical directions, and the fact that the integrand is
entire in the right half plane implies that the vertical line of integration can be shifted at
will, so that F, (x) is independent of the choice of b.

The usual Mellin-Barnes integral representation for K, (x) can be used to show that
the earlier function F(x) is just F,(x). By differentiating the contour integral definition of
F,,(x) one finds that F,,(x) = —x~'F,,_,(x) so that the function F,,(x) is, very roughly, an
iterated integral of K, (x).

Apply Cauchy’s Theorem to the function A(2 +s5)/t?s™*! on a very tall rectangle
with vertical sides Re(s) =b and Re(s) = —b. Since L(s) and therefore A(s) vanish to
order at least m the residue at s =0 is easy to compute and we have, in the limit of an
infinitely tall rectangle,

b+ioo —-s —b+io _—
A‘"‘)(2)/m!=c2L('”)(2)/m!=% j‘ A—(—z-ﬁ—ds—i j AR+ s)t ds

sm+1 27” sm+1

b—iw —b—iwo
where ¢ is an arbitrary positive real number. In the second integral replace s by —s and
use the functional equation for A(s) to get

1 b+iooA 2 t—s
LM ml=— | ( jfl) ds +

iy i s 2mi

(—1)™w b*i® A2+ 5)¢°

m+1

ds.

b—iw s
The second integral is now the same as the first except that ¢ has been replaced by 7!,
so we will confine our attention to the first integral

1 0t e2%SP(s+2)I'(s+1)LQR+s5)t™*
= —— j ds.

; m+1
27y i s

1

By substituting L(s) = Y a,/n® and rearranging we get

1 otiw F(s+2)F(s)(nt/c)"
i,

—ioo

a,
—2

s
Recalling the definition of F,,(x) we find that we have proved the following theorem.
Theorem 7.8. With the above notation,

(7.9) L™2) = S, () + w(=1"S, (71,

Su(6) = m i—; (—-—-—161/"%"’)

Using this formula, the empirical order of vanishing can be computed quickly (at
least if the conductor isn’t too large); in fact the series converges slightly more quickly as
m increases. In all of our computations there was never any uncertainty on the order of
vanishing: all values that we judged to be non-zero were at least .3 in absolute value (and

where
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also provably non-zero) and all values that we judged to be 0 were zero to as many decimal
places as we cared to accurately compute them. For some of the smaller conductors the
series was carried far enough out that we could prove that the value was less than 10~ !4
in absolute value. For larger conductors the series in (7.9) converge more slowly. We finally
settled on ¢ =107° as the error tolerance for our computations; this represented a com-
promise between the desire to carry the computations through for a large number of curves,
and the desire to maximize our subjective probability that the L-series values less than ¢
were actually equal to 0.

Computing the L-series coefficients. The desired accuracy, 10~ 8, of the computation
and the size of the conductor N (often above 10'°) required that the series be summed to
occasionally as many as several million terms. A profile of an early version of the program
showed that as much as 70 % of the entire computing time was consumed by the calculation
of the coefficient a, , of the elliptic curve itself. The initial algorithm was an optimized
version of a straightforward O(p) aigorithm. This was replaced with a version of the baby-
step giant-step algorithm [Co] which cut the running time; we found that the crossover
between the naive algorithm and the baby-step giant-step algorithm was around p ~ 1000.

Once the a, ; were in hand, the evaluation of the coefficients of the polynomials
L,(x) was easy, and the computation of the a, was also quick but somewhat intricate.
Although it probably didn’t really matter (given the amount of memory available on large
workstations nowadays and the rapidity of any sensible algorithm) we implemented a
generalization of the parsimonious algorithm in [BuGr], p. 27 or [Cr], p. 29 which saves
time and (especially) space. As in [BuGr], the basic idea is to efficiently traverse the tree
whose vertices are integers less than or equal to (say) 10° with edges joining n and np for
primes p.

Computing F, (x). The contour integral expression for F,,(x) allows one to obtain
a power series for F,(x) by the standard device of successively shifting the line of inte-
gration to the left. The poles at the negative integers are simple, and the contribution of
those residues can be readily computed. The poles at s =0 are a bit messy to work out
by hand for m > 1, but they can be handled by a symbolic algebra package which supports
the calculation of residues. The result is

© bkxk
) =7, _1 m+1 __1m T
(7.10) F()=ro+ (=" ' x+(-1) k;k Kk D)1

where

o = Res, o I'(5)2s' ~"(1+ ) e™*1o8t9)

and

Here y is Euler’s constant, and the H,=1+1/2+ -+ +1/k are the harmonic numbers
(and H, = 0). This series converges for all x although for large x, say x > 10, the series
becomes numerically ill-conditioned since the terms grow considerably in value before they
decrease.
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For large x there is an asymptotic expansion
—-m/2 —2V% - ¢ ,m
(7.11) F(x) = /nx3/4m2e-2V <1 + k; x—’;ﬁ)

where the coefficients ¢, ,, satisfy a 3-term recurrence relation. Unfortunately, this did not
give an accurate and fast enough evaluation for F, (x) in the range (roughly) 10 < x < 100.

There is a considerable literature on evaluating special functions of this type ([Lu]).
After trying various techniques, we finally settled on using the above power series to
compute F,,(x) for x <4 and using a Chebyshev expansion for x > 4.

The Chebyshev scheme that seemed to give the most accuracy was as follows. For
the sake of getting a roughly constant function we divide F,,(x) by its leading asymptotic
term to get a new function f,,(x) defined by

fm(x) = Fm (X) - 1/2 xm/2 - 3/4821/Y .
Then we considered the function

gn(®) =1, (16/(x + 1)),

defined on [ —1,1], and computed about 50 very high precision values of g, (x) (using the
power series expansion for F,(x)) and used these to compute the coefficients of the
Chebyshev expansion. The error of each step can be precisely bounded. There are a number
of other ways to compute these coefficients ([Lu]), including complicated closed-form
recursions, but it seemed easiest to rely on a handful of high precision calculations per-
formed using arbitrary precision arithmetic.

In addition to the power series and Chebyshev expansions, we implemented asymptotic
expansions, rational function approximations derived from the power series and asymptotic
expansions, and numerical solutions to differential equations. This variety of algorithms
provided useful checks for the calculations. For the 6-digit accuracy that we settled on,
the power series and Chebyshev expansions were fine, but the question of the asymptotically
best methods, or the best methods if many more coefficients were wanted, is interesting
and deserves further study.

In any event, this technique produced rapidly decreasing d;"* such that

gn(x) = Y d"Ti(x)

k=0

where T, (x) is the usual Chebyshev polynomial. In practice d;" was less than 107 for
k =15 so we computed (at most) 15 terms of the expansion. Note that our computation
needed absolute, rather than relative, accuracy of 10~ ¢ so for large x the leading term in
E, (x) is already small and even fewer terms of the Chebyshev expansion are required.



Buhler, Schoen and Top, Elliptic curves 123
8. The conductor

Given any smooth projective variety, W/Q, and a positive integer m, there is con-
jecturally a conductor associated to the cohomology H™(W) which may be expressed as
a product of local factors [Ser2], 4.1:

(8.1) N=T]p'®.

p

The term f(p) is defined by fixing an auxiliary prime / & p and considering the represen-
tation

(8.2) e:1:=Gal(@,/K) - GL(H"(W_,Q),
where K is the maximal unramified extension of @,. Then f(p) = ¢(p) + 6(p), where
e(p)=dim H"(Wg,, Q) —dim H" (W ,Q,)".

To define 4 (p) one constructs in a natural way an I-stable filtration V. on H (Mg, Q)
with the property that  acts on the associated graded vector space through a finite quo-
tient group, J:

0:J - GL(gr(V.)).

Identify J with the Galois group of a finite extension L/K. Let b:J — Z denote the Swan
character and define

1
o(p) =<Tr (@), b) = 7l Y. Tr(a(g) - b(g).
gelJ

For a more complete discussion of é(p) we refer to [Ser2], 2.1. One conjectures that ¢(p)
and J (p) are independent of /, in which case the conductor N is well defined. When m =1
and W= E is an elliptic curve this is known to hold [Ogg].

If the variety W is replaced by a motive over Q, then the same approach leads to a
conjectural definition of the conductor of the motive in degree m: Simply replace the
cohomology of the variety in (8.2) with the cohomology of the motive [Mu], 1.4. Given
an elliptic curve E/Q, let M= (E3 1P) denote the motive defined in 2.4. Write
e.(p), 0,(p), f1(p) (respectively &,(p), 65(p), f3(p)) for the local terms corresponding to
H'(E) (respectively H3(M)). For ie {1,3} set N;==[] p/*?. The following proposition

p
shows that the conductor N, is well defined and describes how to compute it.

Proposition 8.3. The terms e,(p), 05(p), f2(p) are independent of the choice of auxi-
liary prime | % p. Furthermore we have the following formulas which depend on the reduction
type of E at p and, in the case of potential good reduction, on the group J:

&3(p) = €,(p) = 0 when the reduction at p is good,

e3(p) = 3, ¢,(p) =1 when the reduction at p is multiplicative;
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e5(p) =4, €,(p) =2 in the case of potential multiplicative reduction, or potential good
reduction, except when J =173,

e3(p) = &,(p) =2 in the case of potential good reduction with J=12/3;
05(p) = 6,(p) =0 whenever p = 5,

03(2) =2-94,(2);

95(3) =4,03).

Proof. Set V,=H 1(E@p,@,). The representation g, associated to the third coho-
mology of the motive M is obtained from the representation

0,:1 - GLV)
associated to £ by composing with the third symmetric power representation
GL(V,) » GL(Sym3(V))).

If E has good reduction at p, then ¢, and g, are trivial representations and all in-
variants &, (p), &5(p), 4,(p), and d5(p) are zero.

If E has multiplicative reduction at p, then Ej is isomorphic to a Tate curve. Standard
arguments show that there is a non-trivial I-stable filtration V. : 0 =V, = V, < V, = V, such
that 7 acts trivially on gr(V.), while it acts non-trivially on V,. Write Sym3V. for the
induced filtration

Sym3V.:0cV3c V2V, eV, Vy2< Sym3(V,).

Then V;* = Sym3(V,)! and I acts trivially on gr(Sym?¥.). These filtrations may be used
in the definition of §(p) outlined above. Thus,

e (p)=1, &(p)=3, 0,(p)=0, 65(p)=0.

If E has potential multiplicative reduction at p, it becomes isomorphic to a Tate
curve over some quadratic extension L/K. The previous discussion gives a Gal(Gpo /L)-
stable filtration V., which is in fact /-stable, since Gal(Q,/L) is a normal subgroup. The
quotient J = 1/Gal(Q,/L) ~Z/2 acts non-trivially on gr(}.), since the Tate module has
no non-zero invariants when there is additive reduction. The determinant applied to g, is
identically 1, since g, respects the Weil pairing. It follows that a generator of J acts by
—1Id on gr(V.). Furthermore, as J-modules

gr(Sym>V.) ~ gr(V.) ® gr (V).
Thus
e(p)= 2, e(p)=4, d;(p)=26,(p).

When p > 2, L/K is tamely ramified and the Swan character is identically 0. In this case
0,(p) =0.
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Finally consider the case of potential good reduction. By the criterion of Néron,
Ogg, and Shafarevich [Si], VII. 7.1, there is a unique minimal extension L/K over which
E acquires good reduction. L /K is finite and Galois. Furthermore, J:= Gal(L/K) acts on
the Néron model of E; and acts faithfully on the Tate module. As the Néron model is an
abelian scheme, the Tate module of E;, may be identified with the Tate module of the
special fiber E,. It follows that J acts faithfully on E,. Write J < 4:= Aut(E,). It is known
that A< SL(2,Z/3) when p=2, AcZ/3x7Z/4 when p=3,and Ac=Z/6or AcZ/4
when p = 5 [Si], Appendix A. This shows that J must belong to a short list of well known
groups. It is easy to check that every group on this list has, up to isomorphism, exactly
one faithful two dimensional representation with determinant 1 over an algebraically closed
field of characteristic 0. Thus there is at most one choice for the representation

61:J = GL(V,)

and its character, Tr(g,), must take values in Z independent of /. The same is true for the
character of the third symmetric power which is given by the formula, Tr(g,)* — 4Tr(g,)
Since the dimension of the invariant subspace may be computed from the character and
since one may take the trivial filtration in the definitions of J,(p) and &,(p), we see that
£1(p), &5(p), 8,(p), d5(p) are independent of /.

It is easy to run through the list of possible J’s to deduce that ¢, (p) = 2 and e5(p) = 4
except when J >~ Z/3, in which case ¢, (p) = £;(p) = 2. Write J, < J for the (unique) Sylow-
p-subgroup (or the empty set if ged(p,|J|) =1) and recall that b, _; =0 [Ser2], 2.1. If
p=3and J,+ 0, then J,~7Z/3 and

Sym*(V)) ~V,®11

as J,-modules. In this case d;(p) = 6,(p). f p=2and J, + @, then J, is a subgroup of the
quaternions. Independent of the choice of subgroup and the choice of / we find

Sym*(V,) ~V, @V,
as J,-modules, so 6,(2) = 24, (2), which completes the proof of the proposition.

Given an elliptic curve E, factor the conductor Ny = N\, N,qq. Where N, is divi-
sible only by the primes of multiplicative reduction and N,44 only by the primes of additive

reduction.

Corollary 8.4. If E has tame reduction at 3 and J ~ Z |3 does not occur at places of
potential good reduction, then

N=N}

mult

Nazdd ‘
Proof. Immediate from 8.3.
The next lemma shows that the corollary applies to all curves E, defined by (4.1).
Lemma 8.5. If E, has additive reduction for p = 3, then the reduction is of Kodaira
type I* for some v = 0. Furthermore, the reduction at 3 is tame and potential good reduction

at 2 with J~ 73 does not occur.

9 Journal fir Mathematik. Band 492
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Proof. The elliptic curve defined by equation (4.1) has a Q-rational two torsion
point at (x:y:z)=(0:0:1) which may be used to restrict the types of bad reduction.
Thus E has no fibers in characteristic p > 2 of Kodaira type IV or IV*, since the Néron
models of such reductions have no non-trivial two torsion [Si], p.359. This rules out
potential good reduction at primes p = 5 with J~ Z/3.

To complete the proof, recall from 6.9 that there is a quadratic extension of Q over
which E acquires a rational point of order 4. This allows us to rule out reduction types
for which the Néron model over a quadratic extension does not have a 4-torsion point.
The lemma follows from the list of singular fibers in Néron models [Si], p. 359.

9. Results
For convenience, we divide the curves that we considered into three categories:
(1) tabulated curves E of small conductor;
(2) curves E, for which the isogeny ¢ : E, - E_5;_, of §6 is not defined over Q;
(3) curves E, for which the isogeny ¢: E, - E_5_, of §6 is defined over Q.

Curves of the first type are easy to find: the Antwerp table [MF] contains all curves
with conductor less than 200, and the more recent table [Cr] goes much further. Curves
of the second type with small enough N were easy to produce, and we could have found
more if we liked. Curves of the third type tended to have significantly larger conductors,
and were considerably harder to come by. A number of reasonable parameter values
produced conductors that were far too large for us to carry out the L-series computations
(given our self-imposed bound on the error of 10~°).

In Table 9.1 the curves of the first type are given. They are a small sampling chosen
from the Antwerp tables [MF] to make sure that our programs worked properly, to
investigate hypotheses on the symmetric cube conductor, and to insure that it was possible
for the symmetric cube L-series to be non-zero at the central point. We have no information
concerning Griff#(EJ) for these curves. The columns contain:

(1) the empirical order Ord of vanishing of the symmetric cube L-series at the central
point s =2;

(2) the name of the curve as in the Antwerp tables;

(3) the conductor, N, of the curve, in factored form;

(4) the Kodaira symbol for the reduction of the curve at the successive primes dividing
the conductor; if the curve has multiplicative reduction R then R.,, resp. R,, indicates
that the reduction is split, resp. nonsplit;

(5) the conductor, N, of the symmetric cube L-series;

(6) the leading term L% (2) of the L-series at s = 2.
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The conductor N of the symmetric cube is included in this table because it cannot

be inferred from Ng as easily as in the case of the curves E, (cf. 8.4).

Table 9.1. Curves of small conductor.
Ord curve Ng reduction N L0 (2)
2 73B 73 | P 733 6.23132
2 1094 109 1, 1093 7.28745
2 1394 139 1, 139 10.47970
1 374 37 1., 373 2.46864
1 121D 112 I 114 2.29176
1 1624 234 I.,,1V 23.3¢ 1.47250
1 162B 2.3 I, IV* 23.36 1.47250
0 114 1 1, 113 1.14023
0 S0F 252 1.1V 23. 52 0.36156
0 548 2-3° I, IV 2338 1.32432
0 674 67 1, 673 3.03007
0 88 4 2211 1%.1,,, 26113 0.83738
0 128B 27 1% 214 1.79729
0 135B 335 I*,1, ., 3%.53 1.95428
0 1744 2:3:29 | LIl 2333293 1.88156

Table 9.2 contains curves E, for which the isogeny ¢ : E, - E_;_, of § 6 is not defined
over Q. For each value of the parameter a which we tested we were able to find primes
I, p, and q so that the hypotheses of Theorem 4.8 held. Thus P, = gives an element of
infinite order in the Griffiths group. The lower bound for the rank (Rnk in the notation
of 0.4) is in each case 1. The columns contain:

(1) the empirical order of vanishing of the symmetric cube L-series at the central

point s =2;

(2) the value of the parameter a;
(3) the conductor of the curve, in factored form;

(4) the Kodaira symbol for the reduction of the curve at the successive primes dividing
the conductor;

(5) the leading term of the L-series.



128 Buhler, Schoen and Top, Elliptic curves

(6) two prime numbers p, £ which satisfy the hypotheses of Theorem 4.8. In fact,
we verified in all cases that the cycle defined in Section 4 has infinite order. The additional
prime g which is needed to deduce this from Theorem 4.8 is not listed, since in virtually
all cases the smallest possible prime of good reduction different from p and ¢ works.

Table 9.2. Curves with Rnk equal to one.

Ord a Ng reduction L9 (2) ) X%

3 7/3 25.3.5-13 1535 OO U0 PO 609.95270 29,7
3 —18/5 24.5.7213 £ B £ 965.32579 37,11
3 ~16 26.3.5.7 L1 .0, L, 607.71508 13,5
3 ~11/2 25.32.52.7 R EN E A 874.51073 37,11
3 —11 35.3.5-13? 21,1, 12 953.96251 19,5
2 8/3 26.3.7-11 L1, L1, 54.16555 17,5
2 8 26.32.5 ILI% 1, 43.80381 19,5
2 6/5 5-11 Lol 6.92373 23,5
2 6 247 51, 8.54671 19,7
2 5/2 25.3.7 £ P 30.87214 43,13
2 47 3.52.7 L., 1% 1., 14.38118 73,17
2 4 26.3.5 ILL,.,.1,, 42.30223 29,7
2 26/3 2:3-52.29 Lol 160, 80.66035 47,5
2 26 26.32.7 3181, 35.05693 29,5
2 2/5 26.3.5.7 38 PO PO O 133.68636 17,5
2 18/7 2-5.7 Lo Lo Ly 16.36461 13,5
2 14/3 26.3-5.17 630 U0 IS IO §8.34283 37,5
2 15 13217 1L, 8.92900 23,5
2 10 26311 3. 1,..1,. 34.50741 13,5
2 -9/8 24.7 1% 1, 8.54671 19,7
2 —8/5 26.3-5 L1, 1., 38.87475 17,5
2 ~7/3 233132 1, 1% 33.17891 31,5
2 _34 2:3-11 Loolinl., 14.03100 13,5
2 ~26 24.3.5.72 61,0, I 76.31136 31,5
2 —2/7 24.3.5.7 Ll 1...0,., 56.47924 17,5
2 ~19/3 3-13 L Las 4.54546 19,5
2 —14/5 26.32.5 I3 I% 1, 44.91142 13,5
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—13/7 2%.32.7 1698 £ 58 PO 24.31534 29,7
-10/3 24-3.7 LI, 1, 21.37720 23,5
—11/8 24.32.5 14151, 24.99702 13,5
—1/4 24-3.7 I3 1.1, 21.37720 23,5
—2/5 24.32.5 151, 24.99702 13,5
7/2 2%-32-11 1§ 13,1, 7.37280 13,5
7 23.3.52 I*, I, 1E 6.75735 17,5
5/3 23.3-11 I* 1,1, 3.75056 19,5
5 2%.32.7 IE 151, 5.50251 13,5
4/5 20.32.5.7 ILIE T, . 1, 9.81988 19,5
30 2-7%-31 | PR 9 PO 12.67917 29,7
23 23.3%2.5.72 1%, I, I3 6.71263 13,5
22/5 2-3%-5 L., 131, 4.44140 101,5
2/3 24.3-5 | -0 PRI P 5.47620 13,5
2/7 327 %1, 1.43468 41,11
18 24-5-19 ILI, .1, 4.92283 13,5
1/3 23.3.52.7 1, 18 1, 5.62784 31,5
1/2 2%-3%-5 1§15 1, 2.96196 19,7
14 32-5 %1, 1.28488 17,5
1 2%-3 1.1, 2.63783 29,7
-9/5 2%-5-192 I+ 1, I¥ 3.32994 23,5
—8/3 20.3-5-7% ILL L I 3.15527 19.7
-1 2°-3-5 | 59 P O 7.22978 3.7
—6/7 24.52.7 15151, 4.82130 19,7
—6/5 235 L1, 1.88137 31,5
-6 26-5 I 1., 3.79533 23,5
-5 22.3-7% 1I* 1., 1% 3.87849 17,5
-5/2 2%-3 18,1, 2.63783 29,7
—4/7 26-3.5-7 ILL e 1 17.39415 13,5
—4 26. 32 ILIF 3.18279 29,7
-25 2%-32.23 I, 1%, 1, 7.76286 29,7
—22 26-32.5-7 I 151,61, 25.41468 17,5
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Ord a Ng reduction LO(2) p.t
1 —2/3 26.3 1., 3.01850 31,5
1 —14/3 24.3.5%.11 51,181, 2.82070 19,5
1 —11/5 25.32.5.72 3141, I 17.74720 31,7
1 ~10/7 26.32.7 13151, 0.96707 23,5
1 ~10 243 13,12 2.38506 17,5
1 3 2.5 I+, 1, , 1.88137 31,5

It should be clear that the data in Table 9.2 is consistent with recurring fantasy 0.2:
in all cases, the (numerical) order of vanishing of the L-series is at least 1, which is the
lower bound on the rank in the current situation. Note that in many cases the order of
vanishing in fact exceeds 1. When this happens, 0.2 predicts that cycles exist which are
independent of the one we found. We have not produced a single example of such an inde-
pendent cycle.

There are two instances in Table 9.2 where the computed order of vanishing is 1, but
where we know of two cycles. Namely, it turns out that the curves E; and E_g 5 are
isogenous. A similar isogeny occurs between E, and E_5,,. Analogous to the construction
in Section 6 one can use the isogeny to transport a cycle from one triple product to the
other. Since the computed order of vanishing equals 1, recurring fantasy 0.2 predicts in
these two cases that the two cycles are dependent. Using Theorem 4.8, we have checked
that all cycles involved here have infinite order. Although we have not been able to prove
dependence, we did check that (notations as in independence criterion 6.2) u; , = fi_¢s,,
and y; ,= U_s,,, , for all primes p of good reduction with 5 < p <200, and all # > 3. Hence
also this is consistent with 0.2.

Table 9.3 contains information concerning curves E, for which the isogeny
¢ : Ea - E— 3-a
of §6 is defined over Q. In each case we were able to apply 6.2 to show that P, Z and
P,w,E_;_,span a rank two subgroup of Griff2(E2;). Thus the lower bound Rnk on the

rank of the Griffiths group is in each case 2. The columns contain:

(1) the empirical order of vanishing of the symmetric cube L-series at the central
point s = 2;

(2) the value of the parameter ¢, where a = (2t% + 5)/(t> —1);
(3) the conductor of the curve, in factored form;

(4) the Kodaira symbol for the reduction of the curve at the successive primes divid-
ing the conductor;

(5) the leading term of the L-series;
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(6) two primes p,, p, which, together with suitable / and g satisfy the conditions of
independence criterion 6.2. The primes /, ¢ are not listed since / is one of the primes larger
than 3 which divides the order of E,(F,,) and is therefore easily found, and a g satisfying
6.2 (1) is always very easily found.

Table 9.3. Curves E, with Rnk equal to 2.

Ord t N; reduction L0 (2) P1,P2
3/2 3-5-72.43 Lol I8 5089.76245 13,23
10/3 3-13- 61 Lol L., 2326.85819 23,47
9/2 3-11-37 Lol 226.26037 13,17
11/10 3-7-109 O P 175.29295 89,97
10/17 3-13-181 SO RS 460.66348 31,43
4/3 23.3-13 1,1, 26.67519 73,137
1/8 23-3.7-37 HLL,,, L. 1., 63.83898 13,43
5/9 24-3-7-19 35 OUN0 POS OO0 70.32110 13,23
5/2 3-13 O 4.54546 19,83
6 3.5.7 Lol La 12.14358 13,37
2 3-72-19 Lo I% 1L, 17.86944 13,23

Remark 9.4. The tables indicate that the leading term L©%(2) is positive in each
case tested. This is predicted by the generalized Riemann hypothesis since L(s) > 0 for
real s in the domain of convergence of the Euler product (s > 5/2). In the case that Ny is
square-free, Gross and Kudla prove that L(2) = 0.
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