2,168 research outputs found
Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons
The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron
Patron Demand Deposit Account and Regional Patronage Financing Activities of Agribusiness Cooperatives
This paper investigates agribusiness cooperatives' reliance on patron demand deposit accounts (PDDAs) and regional patronage as sources of capital. Approximately 13% of cooperatives carry PDDAs, typically fruit cooperatives, of which over one-half have no financial protection against large unexpected withdrawals. Cooperatives with PDDAs must be concerned with potential legal conflicts regarding the handling of these accounts, as evidenced by a U.S. Supreme Court case classifying PDDAs as securities. Supply cooperatives are most likely to show investment in other cooperatives as a high percentage of total assets, which could generate insolvency issues for locals.cooperative finance, patron demand deposit accounts, regional patronage., Agricultural Finance, Agribusiness,
Extension, disruption, and translation of an orogenic wedge by exhumation of large ultrahigh-pressure terranes: Examples from the Norwegian Caledonides
Far-traveled allochthons (greater than 100 km) within collisional orogenic wedges may have undergone significant lateral movement by passive transport (in addition to thrusting) where they lie tectonically above large, exhumed, high-pressure/ultrahigh-pressure (HP/UHP) metamorphic terranes. Continental collision results in the subduction of one craton beneath another into the mantle. The subducted craton undergoes HP/UHP metamorphism, while an accretionary orogenic wedge develops simultaneously at its junction with the overlying craton. The subsequent exhumation of a large HP/UHP terrane by either far-field extension or buoyancy-driven extrusion, or both, reverses the shear traction along its upper boundary from foreland-directed thrust motion to hinterland-directed normal displacement. This normal-sense shear can stretch, thin, and fragment the overlying wedge and even carry a detached frontal fragment passively toward the foreland on top of the exhuming plate. The total âpiggybackâ displacement would be a function of the amount of exhumation of the HP/UHP terrane and the timing of its breakoff from the hinterland portion of the wedge. This model is applied to the Trondheim and Jotun nappe complexes of the Caledonides of southern Scandinavia, which were translated greater than 300 km to the E and SE, respectively, during the 430â385 Ma Scandian orogeny. Their hinterland boundaries rest on top of the HP/UHP Western Gneiss Complex. Kinematic indicators along their basal dĂ©collements indicate a change in shear sense from top-E/SE to top-W/NW at the same time (ca. 405 Ma) that radiometric ages indicate the Western Gneiss Complex began to exhume from the mantle. Displacements of tens of kilometers along these dĂ©collements stretched and thinned the Trondheim nappe complex and fragmented the Jotun nappe complex. Ultimately, this basal traction led to the breakaway of the frontal segments of the allochthons, allowing them to be carried passively to the E/SE as the Western Gneiss Complex continued to exhume. Top-W/NW shear continued between the Western Gneiss Complex and the stranded rearward segments of the allochthons, resulting in the opening up of the Western Gneiss Region tectonic window between the E/SE-translating nappes and their relatively âfixedâ equivalents in the W/NW. The total displacement of the traveled frontal allochthons could have been considerably farther than that accomplished by thrusting alone
Dirac-Brueckner Hartree-Fock Approach: from Infinite Matter to Effective Lagrangians for Finite Systems
One of the open problems in nuclear structure is how to predict properties of
finite nuclei from the knowledge of a bare nucleon-nucleon interaction of the
meson-exchange type. We point out that a promising starting point consists in
Dirac-Brueckner-Hartree-Fock (DBHF) calculations us- ing realistic
nucleon-nucleon interactions like the Bonn potentials, which are able to
reproduce satisfactorily the properties of symmetric nuclear matter without the
need for 3-body forces, as is necessary in non-relativistic BHF calculations.
However, the DBHF formalism is still too com- plicated to be used directly for
finite nuclei. We argue that a possible route is to define effective
Lagrangians with density-dependent nucleon-meson coupling vertices, which can
be used in the Relativistic Hartree (or Relativistic Mean Field (RMF)) or
preferrably in the Relativistic Hartree- Fock (RHF) approach. The
density-dependence is matched to the nuclear matter DBHF results. We review the
present status of nuclear matter DBHF calculations and discuss the various
schemes to construct the self-energy, which lead to differences in the
predictions. We also discuss how effective Lagrangians have been constructed
and are used in actual calculations. We point out that completely consistent
calculations in this scheme still have to be performed.Comment: 16 pages, to be published in Journal of Physics G: Nuclear and
Particle Physics, special issue
A unitary correlation operator method
The short range repulsion between nucleons is treated by a unitary
correlation operator which shifts the nucleons away from each other whenever
their uncorrelated positions are within the replusive core. By formulating the
correlation as a transformation of the relative distance between particle
pairs, general analytic expressions for the correlated wave functions and
correlated operators are given. The decomposition of correlated operators into
irreducible n-body operators is discussed. The one- and two-body-irreducible
parts are worked out explicitly and the contribution of three-body correlations
is estimated to check convergence. Ground state energies of nuclei up to mass
number A=48 are calculated with a spin-isospin-dependent potential and single
Slater determinants as uncorrelated states. They show that the deduced energy-
and mass-number-independent correlated two-body Hamiltonian reproduces all
"exact" many-body calculations surprisingly well.Comment: 43 pages, several postscript figures, uses 'epsfig.cls'. Submitted to
Nucl. Phys. A. More information available at http://www.gsi.de/~fm
Simple approximation for the starting-energy-independent two-body effective interaction with applications to 6Li
We apply the Lee-Suzuki iteration method to calculate the linked-folded
diagram series for a new Nijmegen local NN potential. We obtain an exact
starting-energy-independent effective two-body interaction for a multi-shell,
no-core, harmonic-oscillator model space. It is found that the resulting
effective-interaction matrix elements can be well approximated by the Brueckner
G-matrix elements evaluated at starting energies selected in a simple way.
These starting energies are closely related to the energies of the initial
two-particle states in the ladder diagrams. The ``exact'' and approximate
effective interactions are used to calculate the energy spectrum of 6Li in
order to test the utility of the approximate form.Comment: 15 text pages and 2 PostScript figures (available upon request).
University of Arizona preprint, Number unassigne
Clinical Experience with the PillCam Patency Capsule prior to Video Capsule Endoscopy: A Real-World Experience
Background. In patients with known or suspected risk factors for gastrointestinal stenosis, the PillCam patency capsule (PC) is given before a video capsule endoscopy (VCE) in order to minimize the risk of capsule retention (CR). CR is considered unlikely upon excretion of the PC within 30 hours, excretion in an undamaged state after 30 hours, or radiological projection to the colon. Methods. We performed a retrospective analysis of 38 patients with risk factors for CR, who received a PC from 02/2013 to 04/2015 at Klinikum Augsburg. Results. Sixteen of our 38 patients observed a natural excretion after a mean time of 34 hours past ingestion. However, only 8 patients observed excretion within 30 hours, as recommended by the company. In 20 patients passage of the PC into the colon was shown via RFID-scan or radiological imaging (after 33 and 45 hours, resp.). Only 2 patients showed a pathologic PC result. In consequence, 32 patients received the VCE; no CR was observed. Conclusion. Our data indicates that a VCE could safely be performed even if the PC excretion time is longer than 30 hours and the excreted PC was not screened for damage
The Case for Social Enterprise
The bottom of the pyramid (BoP) approach popularised Prahalad (2004) as well as other writers such as Hart (2005) and London (2007), calls for the engagement of business with the bottom segment of the global income pyramid, and has attracted considerable attention and debate. The BoP lens is applied chiefly to communities experiencing âextreme povertyâ in low income countries with little reference to the growing number of people living in ârelative povertyâ in high income countries. For the purpose of stimulating academic debate this paper seeks to explore the role of the so-called fourth sector, a domain for hybrid business ventures of social (and, in the case of this paper, Indigenous) entrepreneurs, at what we refer to as âthe bottom at the top of the income pyramidâ in Australia. Using examples of Indigenous and social entrepreneurship within disadvantaged communities, we seek to highlight the scope for fourth sector enterprises at the lower end of the income spectrum within developed countries. It is suggested that the business models found within the fourth sector offer promising, alternative approaches for addressing the economic as well as social and cultural needs of those living on the fringes of todayâs increasingly fragmented high-income societies
Auxiliary potential in no-core shell-model calculations
The Lee-Suzuki iteration method is used to include the folded diagrams in the
calculation of the two-body effective interaction between
two nucleons in a no-core model space. This effective interaction still depends
upon the choice of single-particle basis utilized in the shell-model
calculation. Using a harmonic-oscillator single-particle basis and the
Reid-soft-core {\it NN} potential, we find that overbinds
^4\mbox{He} in 0, 2, and model spaces. As the size of the
model space increases, the amount of overbinding decreases significantly. This
problem of overbinding in small model spaces is due to neglecting effective
three- and four-body forces. Contributions of effective many-body forces are
suppressed by using the Brueckner-Hartree-Fock single-particle Hamiltonian.Comment: 14 text pages and 4 figures (in postscript, available upon request).
AZ-PH-TH/94-2
- âŠ