103 research outputs found

    Sexual selection drives weak positive selection in protamine genes and high promoter divergence, enhancing sperm competitiveness

    Get PDF
    Phenotypic adaptations may be the result of changes in gene structure or gene regulation, but little is known about the evolution of gene expression. In addition, it is unclear whether the same selective forces may operate at both levels simultaneously. Reproductive proteins evolve rapidly, but the underlying selective forces promoting such rapid changes are still a matter of debate. In particular, the role of sexual selection in driving positive selection among reproductive proteins remains controversial, whereas its potential influence on changes in promoter regions has not been explored. Protamines are responsible for maintaining DNA in a compacted form in chromosomes in sperm and the available evidence suggests that they evolve rapidly. Because protamines condense DNA within the sperm nucleus, they influence sperm head shape. Here, we examine the influence of sperm competition upon protamine 1 and protamine 2 genes and their promoters, by comparing closely related species of Mus that differ in relative testes size, a reliable indicator of levels of sperm competition. We find evidence of positive selection in the protamine 2 gene in the species with the highest inferred levels of sperm competition. In addition, sperm competition levels across all species are strongly associated with high divergence in protamine 2 promoters that, in turn, are associated with sperm swimming speed. We suggest that changes in protamine 2 promoters are likely to enhance sperm swimming speed by making sperm heads more hydrodynamic. Such phenotypic changes are adaptive because sperm swimming speed may be a major determinant of fertilization success under sperm competition. Thus, when species have diverged recently, few changes in gene-coding sequences are found, while high divergence in promoters seems to be associated with the intensity of sexual selection

    Sexual selection drives weak positive selection in protamine genes and high promoter divergence, enhancing sperm competitiveness

    Get PDF
    Phenotypic adaptations may be the result of changes in gene structure or gene regulation, but little is known about the evolution of gene expression. In addition, it is unclear whether the same selective forces may operate at both levels simultaneously. Reproductive proteins evolve rapidly, but the underlying selective forces promoting such rapid changes are still a matter of debate. In particular, the role of sexual selection in driving positive selection among reproductive proteins remains controversial, whereas its potential influence on changes in promoter regions has not been explored. Protamines are responsible for maintaining DNA in a compacted form in chromosomes in sperm and the available evidence suggests that they evolve rapidly. Because protamines condense DNA within the sperm nucleus, they influence sperm head shape. Here, we examine the influence of sperm competition upon protamine 1 and protamine 2 genes and their promoters, by comparing closely related species of Mus that differ in relative testes size, a reliable indicator of levels of sperm competition. We find evidence of positive selection in the protamine 2 gene in the species with the highest inferred levels of sperm competition. In addition, sperm competition levels across all species are strongly associated with high divergence in protamine 2 promoters that, in turn, are associated with sperm swimming speed. We suggest that changes in protamine 2 promoters are likely to enhance sperm swimming speed by making sperm heads more hydrodynamic. Such phenotypic changes are adaptive because sperm swimming speed may be a major determinant of fertilization success under sperm competition. Thus, when species have diverged recently, few changes in gene-coding sequences are found, while high divergence in promoters seems to be associated with the intensity of sexual selection

    Características clínico-demográficas y tipificación del virus de papiloma humano en mujeres paraguayas con citologías negativas para lesión escamosa intraepitelial

    Get PDF
    Paraguay posee una alta tasa de incidencia de cáncer de cuello uterino de 35/100.0000 mujeres en el año 2008 y el virus de papiloma humano (HPV) es su agente causal. La planificación de medidas de prevención puede ser beneficiada con conocimientos sobre los tipos virales, por ello, el objetivo de este estudio fue determinar características clínico-demográficas y los tipos de HPV presentes en mujeres con citología negativa para lesión escamosa intraepitelial. Estudio de corte transverso con componente analítico en 207 mujeres con citología negativa para lesión escamosa intraepitelial provenientes de centros de salud de Asunción. La tipificación fue realizada por reacción en cadena de la polimerasa utilizando cebadores MY09/11 y GP5/GP6, seguida de polimorfismo de longitud de fragmentos de restricción e hibridación lineal reversa, respectivamente. La asociación entre HPV y las características clínico-demográficas fue determinada por análisis de Chi cuadrado (EpiInfo versión 3,2). Se detectó alta frecuencia de HPV (21%), siendo el tipo predominante HPV 16 (4,3%) seguido de HPV 58/31 (2,4% cada uno). Se observó asociación entre la presencia de HPV y la edad (p=0,0002), detectándose mayor frecuencia de HPV en mujeres menores a 30 años, la cual, disminuyó al aumentar la edad, presentando un ligero aumento en mujeres de 60 años o más. En conclusión, los datos muestran una alta frecuencia de HPV y HPV 16 en mujeres menores a 30 años con citología negativa y sugieren la necesidad de realizar control posteriormente, a fin de identificar las infecciones persistentes que podrían causar lesión de cuello uterino

    A Model-Based Analysis of GC-Biased Gene Conversion in the Human and Chimpanzee Genomes

    Get PDF
    GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available. © 2013 Capra et al

    Evaluation of HBV-Like circulation in wild and farm animals from Brazil and Uruguay.

    Get PDF
    The origin of the hepatitis B virus is a subject of wide deliberation among researchers. As a result, increasing academic interest has focused on the spread of the virus in different animal species. However, the sources of viral infection for many of these animals are unknown since transmission may occur from animal to animal, human to human, animal to human, and human to animal. The aim of this study was to evaluate hepadnavirus circulation in wild and farm animals (including animals raised under wild or free conditions) from different sites in Brazil and Uruguay using serological and molecular tools. A total of 487 domestic wild and farm animals were screened for hepatitis B virus (HBV) serological markers and tested via quantitative and qualitative polymerase chain reaction (PCR) to detect viral DNA. We report evidence of HBsAg (surface antigen of HBV) and total anti-HBc (HBV core antigen) markers as well as low-copy hepadnavirus DNA among domestic and wild animals. According to our results, which were confirmed by partial genome sequencing, as the proximity between humans and animals increases, the potential for pathogen dispersal also increases. A wider knowledge and understanding of reverse zoonoses should be sought for an effective One Health response

    Extreme Evolutionary Disparities Seen in Positive Selection across Seven Complex Diseases

    Get PDF
    Positive selection is known to occur when the environment that an organism inhabits is suddenly altered, as is the case across recent human history. Genome-wide association studies (GWASs) have successfully illuminated disease-associated variation. However, whether human evolution is heading towards or away from disease susceptibility in general remains an open question. The genetic-basis of common complex disease may partially be caused by positive selection events, which simultaneously increased fitness and susceptibility to disease. We analyze seven diseases studied by the Wellcome Trust Case Control Consortium to compare evidence for selection at every locus associated with disease. We take a large set of the most strongly associated SNPs in each GWA study in order to capture more hidden associations at the cost of introducing false positives into our analysis. We then search for signs of positive selection in this inclusive set of SNPs. There are striking differences between the seven studied diseases. We find alleles increasing susceptibility to Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), and Crohn's Disease (CD) underwent recent positive selection. There is more selection in alleles increasing, rather than decreasing, susceptibility to T1D. In the 80 SNPs most associated with T1D (p-value <7.01×10−5) showing strong signs of positive selection, 58 alleles associated with disease susceptibility show signs of positive selection, while only 22 associated with disease protection show signs of positive selection. Alleles increasing susceptibility to RA are under selection as well. In contrast, selection in SNPs associated with CD favors protective alleles. These results inform the current understanding of disease etiology, shed light on potential benefits associated with the genetic-basis of disease, and aid in the efforts to identify causal genetic factors underlying complex disease

    Eliminating a Region of Respiratory Syncytial Virus Attachment Protein Allows Induction of Protective Immunity without Vaccine-enhanced Lung Eosinophilia

    Get PDF
    In a murine model of respiratory syncytial virus disease, prior sensitization to the attachment glycoprotein (G) leads to pulmonary eosinophilia and enhanced illness. Three different approaches were taken to dissect the region of G responsible for enhanced disease and protection against challenge. First, mutant viruses, containing frameshifts that altered the COOH terminus of the G protein, were used to challenge mice sensitized by scarification with recombinant vaccinia virus (rVV) expressing wild-type G. Second, cDNA expressing these mutated G proteins were expressed by rVV and used to vaccinate mice before challenge with wild-type respiratory syncytial virus (RSV). These studies identified residues 193–205 to be responsible for G-induced weight loss and lung eosinophilia and showed that this region was not was not necessary for induction of protective immunity. Third, mice were sensitized using an rVV that expressed only amino acids 124–203 of the G protein. Upon RSV challenge, mice sensitized with this rVV developed enhanced weight loss and eosinophilia. This is the first time that a region within RSV (amino acids 193–203) has been shown to be responsible for induction of lung eosinophilia and disease enhancement. Moreover, we now show that it is possible to induce protective immunity with an altered G protein without inducing a pathological response

    A functional polymorphism under positive evolutionary selection in ADRB2 is associated with human intelligence with opposite effects in the young and the elderly

    Get PDF
    Comparative genomics offers a novel approach to unravel the genetic basis of complex traits. We performed a two stage analysis where genes ascertained for enhanced protein evolution in primates are subsequently searched for the presence of non-synonymous coding SNPs in the current human population at amino acid sites that differ between humans and chimpanzee. Positively selected genes among primates are generally presumed to determine phenotypic differences between humans and chimpanzee, such as the enhanced cognitive ability of our species. Amino acid substitutions segregating in humans at positively selected amino acid sites are expected to affect phenotypic differences among humans. Therefore we conducted an association study in two family based cohorts and one population based cohort between cognitive ability and the most likely candidate gene among the five that harbored more than one such polymorphism. The derived, human-specific allele of the beta-2 adrenergic receptor Arg16Gly polymorphism was found to be the increaser allele for performance IQ in the young, family based cohort but the decreaser allele for two different measures of cognition in the large Scottish cohort of unrelated individuals. The polymorphism is known to affect signaling activity and modulation of beta-2 adrenergic signaling has been shown to adjust memory consolidation, a trait related to cognition. The opposite effect of the polymorphism on cognition in the two age classes observed in the different cohorts resembles the effect of ADRB2 on hypertension, which also has been reported to be age dependent. This result illustrates the relevance of comparative genomics to detect genes that are involved in human behavior. © 2008 Springer Science+Business Media, LLC

    Detection of lineage-specific evolutionary changes among primate species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparison of the human genome with other primates offers the opportunity to detect evolutionary events that created the diverse phenotypes among the primate species. Because the primate genomes are highly similar to one another, methods developed for analysis of more divergent species do not always detect signs of evolutionary selection.</p> <p>Results</p> <p>We have developed a new method, called DivE, specifically designed to find regions that have evolved either more or less rapidly than expected, for any clade within a set of very closely related species. Unlike some previous methods, DivE does not rely on rates of synonymous and nonsynonymous substitution, which enables it to detect evolutionary events in noncoding regions. We demonstrate using simulated data that DivE compares favorably to alternative methods, and we then apply DivE to the ENCODE regions in 14 primate species. We identify thousands of regions in these primates, ranging from 50 to >10000 bp in length, that appear to have experienced either constrained or accelerated rates of evolution. In particular, we detected 4942 regions that have potentially undergone positive selection in one or more primate species. Most of these regions occur outside of protein-coding genes, although we identified 20 proteins that have experienced positive selection.</p> <p>Conclusions</p> <p>DivE provides an easy-to-use method to predict both positive and negative selection in noncoding DNA, that is particularly well-suited to detecting lineage-specific selection in large genomes.</p
    corecore