60 research outputs found

    Machining with AlCr-oxinitride PVD coated cutting tools

    Get PDF
    AlCrOxN1-x coatings were arc deposited onto HSS drills and WC-Co end mills at N2/O2 ratios of 0.9-0.75 using DC or 10 kHz pulse bias. Lower O2 content coatings had a hardness of 32.5 GPa. whereas 0.25 O2 ratio coatings were 24-25 GPa. AlCrOxN1-x coated 6.35 mm Dia. HSS jobber drills were tested by drilling 2.5D holes in AISI D2. 10 kHz 0.9 N2 0.1 O 2 coatings drilled a mean of 17.6 holes/mm, similar to commercial AlCrN coated drills at 17.8 holes/”m, whereas DC 0.75 N2 0.25 O2 coatings drilled 9 holes/mm. AlCrOxN1-x coatedWC-Co end mills had low steady state wear in milling AISI 316L (70 m/min, MQL) and cut > 24 m whereas uncoated tools cut 6 m. In contrast to drilling DC 0.75 N2 0.25 O2 tools had the least corner wear and low adhesion on the rake face

    In-situ synchrotron characterization of fracture initiation and propagation in shales during indentation

    Get PDF
    The feasibility and advantages of synchrotron imaging have been demonstrated to effectively characterise fracture initiation and propagation in shales during indentation tests. These include 1) fast (minute-scale) and high-resolution (ÎŒm-scale) imaging of fracture initiation, 2) concurrent spatial and temporal information (4D) about fracture development, 3) quantification and modelling of shale deformation prior to fracture. Imaging experiments were performed on four shale samples with different laminations and compositions in different orientations, representative of three key variables in shale microstructure. Fracture initiation and propagation were successfully captured in 3D over time, and strain maps were generated using digital volume correlation (DVC). Subsequently, post-experimental fracture geometries were characterized at nano-scale using complementary SEM imaging. Characterisation results highlight the influence of microstructural and anisotropy variations on the mechanical properties of shales. The fractures tend to kink at the interface of two different textures at both macroscale and microscale due to deformation incompatibility. The average composition appears to provide the major control on hardness and fracture initiation load; while the material texture and the orientation of the indentation to bedding combine to control the fracture propagation direction and geometry. This improved understanding of fracture development in shales is potentially significant in the clean energy applications

    Seroprevalence of HCV, HBV and HIV in two inner-city London Emergency Departments.

    Get PDF
    Summary: In this paper we build on work investigating the feasibility of human immunodeficiency virus (HIV) testing in emergency departments (EDs), estimating the prevalence of hepatitis B, C and HIV infections among persons attending two inner-London EDs, identifying factors associated with testing positive in an ED. We also undertook molecular characterisation to look at the diversity of the viruses circulating in these individuals, and the presence of clinically significant mutations which impact on treatment and control. Blood-borne virus (BBV) testing in non-traditional settings is feasible, with emergency departments (ED) potentially effective at reaching vulnerable and underserved populations. We investigated the feasibility of BBV testing within two inner-London EDs. Residual samples from biochemistry for adults (â©Ÿ18 years) attending The Royal Free London Hospital (RFLH) or the University College London Hospital (UCLH) ED between January and June 2015 were tested for human immunodeficiency virus (HIV)Ag/Ab, anti-hepatitis C (HCV) and HBsAg. PCR and sequence analysis were conducted on reactive samples. Sero-prevalence among persons attending RFH and UCLH with residual samples (1287 and 1546), respectively, were 1.1% and 1.0% for HBsAg, 1.6% and 2.3% for anti-HCV, 0.9% and 1.6% for HCV RNA, and 1.3% and 2.2% for HIV. For RFH, HBsAg positivity was more likely among persons of black vs. white ethnicity (odds ratio 9.08; 95% confidence interval 2.72–30), with anti-HCV positivity less likely among females (0.15, 95% CI 0.04–0.50). For UCLH, HBsAg positivity was more likely among non-white ethnicity (13.34, 95% CI 2.20–80.86 (Asian); 8.03, 95% CI 1.12–57.61 (black); and 8.11, 95% CI 1.13–58.18 (other/mixed)). Anti-HCV positivity was more likely among 36–55 year olds vs. â©Ÿ56 years (7.69, 95% CI 2.24–26.41), and less likely among females (0.24, 95% CI 0.09–0.65). Persons positive for HIV-markers were more likely to be of black vs. white ethnicity (4.51, 95% CI 1.63–12.45), and less likely to have one ED attendance (0.39, 95% CI 0.17–0.88), or female (0.12, 95% CI 0.04–0.42). These results indicate that BBV-testing in EDs is feasible, providing a basis for further studies to explore provider and patient acceptability, referral into care and cost-effectiveness

    Synchrotron tomographic quantification of strain and fracture during simulated thermal maturation of an organic-rich shale, UK Kimmeridge Clay

    Get PDF
    Analyzing the development of fracture networks in shale is important to understand both hydrocarbon migration pathways within and from source rocks and the effectiveness of hydraulic stimulation upon shale reservoirs. Here we use time‐resolved synchrotron X‐ray tomography to quantify in four dimensions (3‐D plus time) the development of fractures during the accelerated maturation of an organic‐rich mudstone (the UK Kimmeridge Clay), with the aim of determining the nature and timing of crack initiation. Electron microscopy (EM, both scanning backscattered and energy dispersive) was used to correlatively characterize the microstructure of the sample preheating and postheating. The tomographic data were analyzed by using digital volume correlation (DVC) to measure the three‐dimensional displacements between subsequent time/heating steps allowing the strain fields surrounding each crack to be calculated, enabling crack opening modes to be determined. Quantification of the strain eigenvectors just before crack propagation suggests that the main mode driving crack initiation is the opening displacement perpendicular to the bedding, mode I. Further, detailed investigation of the DVC measured strain evolution revealed the complex interaction of the laminar clay matrix and the maximum principal strain on incipient crack nucleation. Full field DVC also allowed accurate calculation of the coefficients of thermal expansion (8 × 10−5/°C perpendicular and 6.2 × 10−5/°C parallel to the bedding plane). These results demonstrate how correlative imaging (using synchrotron tomography, DVC, and EM) can be used to elucidate the influence of shale microstructure on its anisotropic mechanical behavior

    Enhanced neutrophil extracellular trap formation in COVID-19 is inhibited by the protein kinase C inhibitor ruboxistaurin

    Get PDF
    Background: Neutrophil extracellular traps (NETs) are web-like DNA and protein lattices which are expelled by neutrophils to trap and kill pathogens, but which cause significant damage to the host tissue. NETs have emerged as critical mediators of lung damage, inflammation and thrombosis in coronavirus disease 2019 (COVID-19) and other diseases, but there are no therapeutics to prevent or reduce NETs that are available to patients. Methods: Neutrophils were isolated from healthy volunteers (n=9) and hospitalised patients with COVID-19 at the acute stage (n=39) and again at 3–4 months post-acute sampling (n=7). NETosis was measured by SYTOX green assays. Results: Here, we show that neutrophils isolated from hospitalised patients with COVID-19 produce significantly more NETs in response to lipopolysaccharide (LPS) compared to cells from healthy control subjects. A subset of patients was captured at follow-up clinics (3–4 months post-acute sampling), and while LPS-induced NET formation is significantly lower at this time point, it remains elevated compared to healthy controls. LPS- and phorbol myristate acetate (PMA)-induced NETs were significantly inhibited by the protein kinase C (PKC) inhibitor ruboxistaurin. Ruboxistaurin-mediated inhibition of NETs in healthy neutrophils reduces NET-induced epithelial cell death. Conclusion: Our findings suggest ruboxistaurin could reduce proinflammatory and tissue-damaging consequences of neutrophils during disease, and since it has completed phase III trials for other indications without safety concerns, it is a promising and novel therapeutic strategy for COVID-19

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients

    Dipeptidyl peptidase-1 inhibition in patients hospitalised with COVID-19: a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial

    Get PDF
    Background Neutrophil serine proteases are involved in the pathogenesis of COVID-19 and increased serine protease activity has been reported in severe and fatal infection. We investigated whether brensocatib, an inhibitor of dipeptidyl peptidase-1 (DPP-1; an enzyme responsible for the activation of neutrophil serine proteases), would improve outcomes in patients hospitalised with COVID-19. Methods In a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial, across 14 hospitals in the UK, patients aged 16 years and older who were hospitalised with COVID-19 and had at least one risk factor for severe disease were randomly assigned 1:1, within 96 h of hospital admission, to once-daily brensocatib 25 mg or placebo orally for 28 days. Patients were randomly assigned via a central web-based randomisation system (TruST). Randomisation was stratified by site and age (65 years or ≄65 years), and within each stratum, blocks were of random sizes of two, four, or six patients. Participants in both groups continued to receive other therapies required to manage their condition. Participants, study staff, and investigators were masked to the study assignment. The primary outcome was the 7-point WHO ordinal scale for clinical status at day 29 after random assignment. The intention-to-treat population included all patients who were randomly assigned and met the enrolment criteria. The safety population included all participants who received at least one dose of study medication. This study was registered with the ISRCTN registry, ISRCTN30564012. Findings Between June 5, 2020, and Jan 25, 2021, 406 patients were randomly assigned to brensocatib or placebo; 192 (47·3%) to the brensocatib group and 214 (52·7%) to the placebo group. Two participants were excluded after being randomly assigned in the brensocatib group (214 patients included in the placebo group and 190 included in the brensocatib group in the intention-to-treat population). Primary outcome data was unavailable for six patients (three in the brensocatib group and three in the placebo group). Patients in the brensocatib group had worse clinical status at day 29 after being randomly assigned than those in the placebo group (adjusted odds ratio 0·72 [95% CI 0·57–0·92]). Prespecified subgroup analyses of the primary outcome supported the primary results. 185 participants reported at least one adverse event; 99 (46%) in the placebo group and 86 (45%) in the brensocatib group. The most common adverse events were gastrointestinal disorders and infections. One death in the placebo group was judged as possibly related to study drug. Interpretation Brensocatib treatment did not improve clinical status at day 29 in patients hospitalised with COVID-19. Funding Sponsored by the University of Dundee and supported through an Investigator Initiated Research award from Insmed, Bridgewater, NJ; STOP-COVID19 trial
    • 

    corecore