9,115 research outputs found
Beats of the Magnetocapacitance Oscillations in Lateral Semiconductor Superlattices
We present calculations on the magnetocapacitance of the two-dimensional
electron gas in a lateral semiconductor superlattice under two-dimensional weak
periodic potential modulation in the presence of a perpendicular magnetic
field. Adopting a Gaussian broadening of magnetic-field-dependent width in the
density of states, we present explicit and simple expressions for the
magnetocapacitance, valid for the relevant weak magnetic fields and modulation
strengths. As the modulation strength in both directions increase, beats of the
magnetocapacitance oscillations are observed, in the low magnetic field range
(Weiss-oscillations regime), which are absent in the one-dimensional weak
modulation case.Comment: 11 pages, 7 figures, accepted by Mod. Phys. Lett. B (March 2007
Adaptive spatial mode of space-time and spacefrequency OFDM system over fading channels
In this paper we present a 2 transmit 1 receive (1 Tx : 1 Rx) adaptive spatial
mode (ASM) of space-time (ST) and space-frequency (SF) orthogonal frequency division
multiplexing (OFDM). At low signal to noise ratio (SNR) we employ ST-OFDM and switch
to SF-OFDM at a certain SNR threshold. We determine this threshold from the intersection
of individual performance curves. Results show a gain of 9 dB (at a bit error rate of 10-3) is
achieved by employing adaptive spatial mode compared to a fixed ST-OFDM, almost 6 dB
to fixed SF-OFDM, 4 dB to Coded ST-OFDM and 2 dB to a fixed coded SF-OFDM, at a
delay spread of 700 ns
Strut-and-Tie Modeling of Reinforced Concrete Deep Beams
Strut-and-tie models (STMs) are often used for the design of shear critical deep members because they can rationalize the shear transfer within discontinuous or disturbed regions in reinforced concrete structural elements. Most current codes of practice adopt the strut-and-tie method but provide very little guidance on how to select appropriate strut-and-tie layout and dimensions. Furthermore, the effectiveness factors used to account for the biaxial state of stresses in struts of deep beams are not reliable. This paper reviews the application of STMs for the design of RC deep beams and evaluates current formulations of the effectiveness factor. Experimental and numerical studies are used to assess how the effectiveness factor is influenced by different parameters, including concrete compressive strength, shear span:depth ratio, and shear reinforcement ratio, and to arrive at a more reliable strain-based effectiveness factor. Various effectiveness factors are examined against an extensive database of experimental results on RC deep beams with and without shear reinforcement. The results show that the proposed effectiveness factor yields the most-reliable and most-accurate predictions and can lead to more-economical and safer design guidelines
Use of integrated optical waveguide probes as an alternative to fiber probes for sensing of light backscattered from small volumes
We show that for light collection from thin samples, integrated probes can present a higher efficiency than conventional fiber probes, despite having a smaller collection area. Simulation results are validated by experiments
Arrayed-waveguide-grating light collector for on-chip spectroscopy
We present a novel arrayed-waveguide-grating (AWG) device with improved external (biomedical) signal collection for use in on-chip spectroscopy. The collection efficiency of the device is compared to that of a standard AWG. We also present experimental results on the collection efficiency and size of the collection volume
Zeroing in on Supersymmetric Radiation Amplitude Zeros
Radiation amplitude zeros have long been used to test the Standard Model.
Here, we consider the supersymmetric radiation amplitude zero in
chargino-neutralino associated production, which can be observed at the
luminosity upgraded LHC. Such an amplitude zero only occurs if the neutralino
has a large wino fraction and hence this observable can be used to determine
the neutralino eigenstate content. We find that this observable can be measured
by comparing the p_T spectrum of the softest lepton in the trilepton
decay channel to that of a control process such as
or . We test this technique on a
previously generated model sample of the 19 dimensional parameter space of the
phenomenological MSSM, and find that it is effective in determining the wino
content of the neutralino.Comment: 19 pages, 7 figure
Multi-objective optimisation for minimum quantity lubrication assisted milling process based on hybrid response surface methodology and multi-objective genetic algorithm
© 2019 by SAGE Publications Ltd.Parametric modelling and optimisation play an important role in choosing the best or optimal cutting conditions and parameters during machining to achieve the desirable results. However, analysis of optimisation of minimum quantity lubrication–assisted milling process has not been addressed in detail. Minimum quantity lubrication method is very effective for cost reduction and promotes green machining. Hence, this article focuses on minimum quantity lubrication–assisted milling machining parameters on AISI 1045 material surface roughness and power consumption. A novel low-cost power measurement system is developed to measure the power consumption. A predictive mathematical model is developed for surface roughness and power consumption. The effects of minimum quantity lubrication and machining parameters are examined to determine the optimum conditions with minimum surface roughness and minimum power consumption. Empirical models are developed to predict surface roughness and power of machine tool effectively and accurately using response surface methodology and multi-objective optimisation genetic algorithm. Comparison of results obtained from response surface methodology and multi-objective optimisation genetic algorithm depict that both measured and predicted values have a close agreement. This model could be helpful to select the best combination of end-milling machining parameters to save power consumption and time, consequently, increasing both productivity and profitability.Peer reviewedFinal Published versio
- …