112 research outputs found

    Thermal Shock Resistances and the Irradiation Effects ot Graphites and C/C-Composites for Fusion Reactor Devices

    Get PDF
    Graphites and/or C/C-composites as plasma-facing first wall components for fusion reactor devices are subjected occasionally to plasma disruption. Therefore the thermal shock resistances and fracture toughnesses of these materials must be evaluated to assure appropriate performances. In this study, the thermal shock resistance and fracture toughness of several kinds of graphites and C/C-composites for candidate first wall component tiles are evaluated. The mechanical and fracture mechanics properties for these specimens are also measured. Then, two graphites and three C/C-composites are irradiated with 1.1-1.9×10^n/cm^2 (Energy>29fJ) at 650-1000℃ in a fission reactor (Japan Material Testing Reactor, JMTR) and the degradations in the thermal shock resistances and fracture toughnesses and the changes of mechanical and fracture mechanics properties due to the neutron irradiation are quantitatively studied

    Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes

    Get PDF
    We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR. The 23Na MAS NMR spectra of Na-inserted HC samples showed signals only in the range between +30 and −60 ppm. Each observed spectrum was ascribed to combinations of Na+ ions from the electrolyte, reversible ionic Na components, irreversible Na components assigned to solid electrolyte interphase (SEI) or non-extractable sodium ions in HC, and decomposed Na compounds such as Na2CO3. No quasi-metallic sodium component was observed to be dissimilar to the case of Li inserted in HC. MQMAS NMR implies that heat treatment of HC higher than 1600 °C decreases defect sites in the carbon structure. To elucidate the difference in cluster formation between Na and Li in HC, the condensation mechanism and stability of Na and Li atoms on a carbon layer were also studied using DFT calculation. Na3 triangle clusters standing perpendicular to the carbon surface were obtained as a stable structure of Na, whereas Li2 linear and Li4 square clusters, all with Li atoms being attached directly to the surface, were estimated by optimization. Models of Na and Li storage in HC, based on the calculated cluster structures were proposed, which elucidate why the adequate heat treatment temperature of HC for high-capacity sodium storage is higher than the temperature for lithium storage

    Specific Gut Microbial Environment in Lard Diet-Induced Prostate Cancer Development and Progression

    Get PDF
    Lard diet (LD) is a risk factor for prostate cancer (PCa) development and progression. Two immunocompetent mouse models fed with isocaloric specific fat diets (LD) enriched in saturated and monounsaturated fatty acid (SMFA), showed significanftly enhanced PCa progression with weight gain compared with a fish oil diet (FOD). High gut microbial divergency resulted from difference in diets, and the abundance of several bacterial species, such as in the orders Clostridiales and Lactobacillales, was markedly altered in the feces of LD- or FOD-fed mice. The proportion of the order Lactobacillales in the gut was negatively involved in SMFA-induced body weight gain and PCa progression. We found the modulation of lipid metabolism and cholesterol biosynthesis pathways with three and seven commonly up- and downregulated genes in PCa tissues, and some of them correlated with the abundance of the order Lactobacillales in mouse gut. The expression of sphingosine 1-phosphate receptor 2, which is associated with the order Lactobacillales and cancer progression in mouse models, was inversely associated with aggressive phenotype and weight gain in patients with PCa using the NCBI Gene Expression Omnibus database. Therefore, SMFA may promote PCa progression with the abundance of specific gut microbial species and overexpression of lipogenic genes in PCa. Therapeutics with alteration of gut microbiota and candidate genes involved in diet-induced PCa progression may be attractive in PCa

    Genetic Polymorphisms of IL-17F and TRAF3IP2 Could Be Predictive Factors of the Long-Term Effect of Infliximab against Crohn’s Disease

    Get PDF
    Background. We aimed to identify certain genes related to response to infliximab (IFX) and biomarkers to predict the IFX effect for Japanese Crohn\u27s disease (CD) patients by performing an association study of single nucleotide polymorphisms (SNPs) in candidate genes in the interleukin-(IL-) 17 signaling pathway with response to IFX after 1 year of treatment. Methods. A total of 103 patients were divided into two groups, responders and nonresponders. Twenty-eight tag SNPs in 5 genes were genotyped. The frequencies of alleles and genotypes of each SNP were compared between responders and nonresponders in three different inheritance models. A genetic test was performed using a combination of the associated SNPs as biomarkers. Results. Multivariate logistic regression analysis indicated that the four variable factors, concomitant use of immunomodulators, penetrating disease, a G/G genotype of rs766748 in IL-17F, and a C/C or C/A genotype of rs1883136 in TRAF3IP2, independently contributed to response to IFX after 1 year of treatment. Genetic test using the polymorphisms of these genes perfectly predicted the responder and nonresponder CD patients with both concomitant use of immunomodulators and penetrating disease. Conclusion. IL17F and TRAF3IP2 are one of IFX-related genes, useful as biomarkers of IFX response, and may be target molecules for new therapeutic drugs

    First light demonstration of the integrated superconducting spectrometer

    Full text link
    Ultra-wideband 3D imaging spectrometry in the millimeter-submillimeter (mm-submm) band is an essential tool for uncovering the dust-enshrouded portion of the cosmic history of star formation and galaxy evolution. However, it is challenging to scale up conventional coherent heterodyne receivers or free-space diffraction techniques to sufficient bandwidths (\geq1 octave) and numbers of spatial pixels (>10210^2). Here we present the design and first astronomical spectra of an intrinsically scalable, integrated superconducting spectrometer, which covers 332-377 GHz with a spectral resolution of F/ΔF380F/\Delta F \sim 380. It combines the multiplexing advantage of microwave kinetic inductance detectors (MKIDs) with planar superconducting filters for dispersing the signal in a single, small superconducting integrated circuit. We demonstrate the two key applications for an instrument of this type: as an efficient redshift machine, and as a fast multi-line spectral mapper of extended areas. The line detection sensitivity is in excellent agreement with the instrument design and laboratory performance, reaching the atmospheric foreground photon noise limit on sky. The design can be scaled to bandwidths in excess of an octave, spectral resolution up to a few thousand and frequencies up to \sim1.1 THz. The miniature chip footprint of a few cm2\mathrm{cm^2} allows for compact multi-pixel spectral imagers, which would enable spectroscopic direct imaging and large volume spectroscopic surveys that are several orders of magnitude faster than what is currently possible.Comment: Published in Nature Astronomy. SharedIt Link to the full published paper: https://rdcu.be/bM2F

    Human PSF concentrates DNA and stimulates duplex capture in DMC1-mediated homologous pairing

    Get PDF
    PSF is considered to have multiple functions in RNA processing, transcription and DNA repair by mitotic recombination. In the present study, we found that PSF is produced in spermatogonia, spermatocytes and spermatids, suggesting that PSF may also function in meiotic recombination. We tested the effect of PSF on homologous pairing by the meiosis-specific recombinase DMC1, and found that human PSF robustly stimulated it. PSF synergistically enhanced the formation of a synaptic complex containing DMC1, ssDNA and dsDNA during homologous pairing. The PSF-mediated DMC1 stimulation may be promoted by its DNA aggregation activity, which increases the local concentrations of ssDNA and dsDNA for homologous pairing by DMC1. These results suggested that PSF may function as an activator for the meiosis-specific recombinase DMC1 in higher eukaryotes
    corecore