27 research outputs found

    Modulation of the Voltage Sensor of L-type Ca2+ Channels by Intracellular Ca2+

    Get PDF
    Both intracellular calcium and transmembrane voltage cause inactivation, or spontaneous closure, of L-type (CaV1.2) calcium channels. Here we show that long-lasting elevations of intracellular calcium to the concentrations that are expected to be near an open channel (≥100 μM) completely and reversibly blocked calcium current through L-type channels. Although charge movements associated with the opening (ON) motion of the channel's voltage sensor were not altered by high calcium, the closing (OFF) transition was impeded. In two-pulse experiments, the blockade of calcium current and the reduction of gating charge movements available for the second pulse developed in parallel during calcium load. The effect depended steeply on voltage and occurred only after a third of the total gating charge had moved. Based on that, we conclude that the calcium binding site is located either in the channel's central cavity behind the voltage-dependent gate, or it is formed de novo during depolarization through voltage-dependent rearrangements just preceding the opening of the gate. The reduction of the OFF charge was due to the negative shift in the voltage dependence of charge movement, as previously observed for voltage-dependent inactivation. Elevation of intracellular calcium concentration from ∼0.1 to 100–300 μM sped up the conversion of the gating charge into the negatively distributed mode 10–100-fold. Since the “IQ-AA” mutant with disabled calcium/calmodulin regulation of inactivation was affected by intracellular calcium similarly to the wild-type, calcium/calmodulin binding to the “IQ” motif apparently is not involved in the observed changes of voltage-dependent gating. Although calcium influx through the wild-type open channels does not cause a detectable negative shift in the voltage dependence of their charge movement, the shift was readily observable in the Δ1733 carboxyl terminus deletion mutant, which produces fewer nonconducting channels. We propose that the opening movement of the voltage sensor exposes a novel calcium binding site that mediates inactivation

    Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner

    Get PDF
    Capsaicin is a naturally occurring alkaloid derived from chili pepper which is responsible for its hot, pungent taste. It exerts multiple pharmacological actions, including pain-relieving, anti-cancer, anti-inflammatory, anti-obesity, and antioxidant effects. Previous studies have shown that capsaicin significantly affects the contractility and automaticity of the heart and alters cardiovascular functions. In this study, the effects of capsaicin were investigated on voltage-gated ion currents in rabbit ventricular myocytes. Capsaicin inhibited rapidly activated (IKr) and slowly activated (IKs) K+ currents and transient outward (Ito) K+ current with IC50 values of 3.4 µM,14.7 µM, and 9.6 µM, respectively. In addition, capsaicin, at higher concentrations, suppressed voltage-gated Na+ and Ca2+ currents and inward rectifier IK1 current with IC50 values of 42.7 µM, 34.9 µM, and 38.8 µM, respectively. Capsaicin inhibitions of INa, IL-Ca, IKr, IKs, Ito, and IK1 were not reversed in the presence of capsazepine (3 µM), a TRPV1 antagonist. The inhibitory effects of capsaicin on these currents developed gradually, reaching steady-state levels within 3 to 6 min, and the recoveries were usually incomplete during washout. In concentration-inhibition curves, apparent Hill coefficients higher than unity suggested multiple interaction sites of capsaicin on these channels. Collectively, these findings indicate that capsaicin affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when capsaicin is administered to carriers of cardiac channelopathies or to individuals with arrhythmia-prone conditions, such as ischemic heart diseases

    Methylene Blue Inhibits Cromakalim-Activated K\u3csup\u3e+\u3c/sup\u3e Currents in Follicle-Enclosed Oocytes

    Get PDF
    The effects of methylene blue (MB) on cromakalim-induced K+ currents were investigated in follicle-enclosed Xenopus oocytes. In concentrations ranging from 3–300 μM, MB inhibited K+ currents (IC50: 22.4 μM) activated by cromakalim, which activates KATP channels. MB inhibited cromakalim-activated K+ currents in a noncompetitive and voltage-independent manner. The respective EC50 and slope values for cromakalim-activation of K+ currents were 194 ± 21 µM and 0.91 for controls, and 206 ± 24 µM and 0.87 in the presence of 30 μM MB. The inhibition of cromakalim-induced K+ currents by MB was not altered by pretreatment with the Ca2+ chelator BAPTA, which suggests that MB does not influence Ca2+-activated second messenger pathways. K+ currents mediated through a C-terminally deleted form of Kir6.2 (KirΔC26), which does not contain the sulfonylurea receptor, were still inhibited by MB, indicating direct interaction of MB with the channel-forming Kir6.2 subunit. The binding characteristics of the KATP ligand [3H]glibenclamide are not altered by MB in a concentration range between 1 μM-1 mM, as suggested by radioligand binding assay. The presence of a membrane permeable cGMP analogue (8-Br-cGMP, 100 µM) and a guanylate cyclase activator (BAY 58-2667, 3 µM) did not affect the inhibitory effects of MB, suggesting that MB does not inhibit cromakalim-activated K+ currents through guanylate cyclase. Collectively, these results suggest that MB directly inhibits cromakalim-activated K+ currents in follicular cells of Xenopus oocytes

    Apigenin Alleviates Autistic-like Stereotyped Repetitive Behaviors and Mitigates Brain Oxidative Stress in Mice

    Get PDF
    Studying the involvement of nicotinic acetylcholine receptors (nAChRs), specifically α7-nAChRs, in neuropsychiatric brain disorders such as autism spectrum disorder (ASD) has gained a growing interest. The flavonoid apigenin (APG) has been confirmed in its pharmacological action as a positive allosteric modulator of α7-nAChRs. However, there is no research describing the pharmacological potential of APG in ASD. The aim of this study was to evaluate the effects of the subchronic systemic treatment of APG (10–30 mg/kg) on ASD-like repetitive and compulsive-like behaviors and oxidative stress status in the hippocampus and cerebellum in BTBR mice, utilizing the reference drug aripiprazole (ARP, 1 mg/kg, i.p.). BTBR mice pretreated with APG (20 mg/kg) or ARP (1 mg/g, i.p.) displayed significant improvements in the marble-burying test (MBT), cotton-shredding test (CST), and self-grooming test (SGT) (all p \u3c 0.05). However, a lower dose of APG (10 mg/kg, i.p.) failed to modulate behaviors in the MBT or SGT, but significantly attenuated the increased shredding behaviors in the CST of tested mice. Moreover, APG (10–30 mg/kg, i.p.) and ARP (1 mg/kg) moderated the disturbed levels of oxidative stress by mitigating the levels of catalase (CAT) and superoxide dismutase (SOD) in the hippocampus and cerebellum of treated BTBR mice. In patch clamp studies in hippocampal slices, the potency of choline (a selective agonist of α7-nAChRs) in activating fast inward currents was significantly potentiated following incubation with APG. Moreover, APG markedly potentiated the choline-induced enhancement of spontaneous inhibitory postsynaptic currents. The observed results propose the potential therapeutic use of APG in the management of ASD. However, further preclinical investigations in additional models and different rodent species are still needed to confirm the potential relevance of the therapeutic use of APG in ASD

    The Nonpsychoactive Cannabinoid Cannabidiol Inhibits 5-Hydroxytryptamine3A Receptor-Mediated Currents in Xenopus laevis Oocytes

    Get PDF
    The effect of the plant-derived nonpsychotropic cannabinoid, cannabidiol (CBD), on the function of hydroxytryptamine (5-HT)3A receptors expressed in Xenopus laevis oocytes was investigated using two-electrode voltage-clamp techniques. CBD reversibly inhibited 5-HT (1 μM)-evoked currents in a concentration-dependent manner (IC50 = 0.6 μM). CBD (1 μM) did not alter specific binding of the 5-HT3A antagonist [3H]3-(5-methyl-1H-imidazol-4-yl)-1-(1-methylindol-3-yl)propan-1-one (GR65630), in oocytes expressing 5-HT3A receptors. In the presence of 1 μM CBD, the maximal 5-HT-induced currents were also inhibited. The EC50 values were 1.2 and 1.4 μM, in the absence and presence of CBD, indicating that CBD acts as a noncompetitive antagonist of 5-HT3 receptors. Neither intracellular BAPTA injection nor pertussis toxin pretreatment (5 μg/ml) altered the CBD-evoked inhibition of 5-HT-induced currents. CBD inhibition was inversely correlated with 5-HT3A expression levels and mean 5-HT3 receptor current density. Pretreatment with actinomycin D, which inhibits protein transcription, decreased the mean 5-HT3 receptor current density and increased the magnitude of CBD inhibition. These data demonstrate that CBD is an allosteric inhibitor of 5-HT3 receptors expressed in X. laevis oocytes. They further suggest that allosteric inhibition of 5-HT3 receptors by CBD may contribute to its physiological roles in the modulation of nociception and emesis

    Brain vitamin D3-auto/paracrine system in relation to structural, neurophysiological, and behavioral disturbances associated with glucocorticoid-induced neurotoxicity

    Get PDF
    IntroductionVitamin D3 (VD3) is a potent para/autocrine regulator and neurosteroid that can strongly influence nerve cell function and counteract the negative effects of glucocorticoid (GC) therapy. The aim of the study was to reveal the relationship between VD3 status and behavioral, structural-functional and molecular changes associated with GC-induced neurotoxicity.MethodsFemale Wistar rats received synthetic GC prednisolone (5 mg/kg b.w.) with or without VD3 (1000 IU/kg b.w.) for 30 days. Behavioral, histological, physiological, biochemical, molecular biological (RT-PCR, Western blotting) methods, and ELISA were used.Results and discussionThere was no difference in open field test (OFT), while forced swim test (FST) showed an increase in immobility time and a decrease in active behavior in prednisolone-treated rats, indicative of depressive changes. GC increased the perikaryon area, enlarged the size of the nuclei, and caused a slight reduction of cell density in CA1-CA3 hippocampal sections. We established a GC-induced decrease in the long-term potentiation (LTP) in CA1-CA3 hippocampal synapses, the amplitude of high K+-stimulated exocytosis, and the rate of Ca2+-dependent fusion of synaptic vesicles with synaptic plasma membranes. These changes were accompanied by an increase in nitration and poly(ADP)-ribosylation of cerebral proteins, suggesting the development of oxidative-nitrosative stress. Prednisolone upregulated the expression and phosphorylation of NF-κB p65 subunit at Ser311, whereas downregulating IκB. GC loading depleted the circulating pool of 25OHD3 in serum and CSF, elevated VDR mRNA and protein levels but had an inhibitory effect on CYP24A1 and VDBP expression. Vitamin D3 supplementation had an antidepressant-like effect, decreasing the immobility time and stimulating active behavior. VD3 caused a decrease in the size of the perikaryon and nucleus in CA1 hippocampal area. We found a recovery in depolarization-induced fusion of synaptic vesicles and long-term synaptic plasticity after VD3 treatment. VD3 diminished the intensity of oxidative-nitrosative stress, and suppressed the NF-κB activation. Its ameliorative effect on GC-induced neuroanatomical and behavioral abnormalities was accompanied by the 25OHD3 repletion and partial restoration of the VD3-auto/paracrine system.ConclusionGC-induced neurotoxicity and behavioral disturbances are associated with increased oxidative-nitrosative stress and impairments of VD3 metabolism. Thus, VD3 can be effective in preventing structural and functional abnormalities in the brain and behavior changes caused by long-term GC administration

    Acid-sensing ion channel blocker diminazene facilitates proton-induced excitation of afferent nerves in a similar manner that Na+/H+ exchanger blockers do

    Get PDF
    Tissue acidification causes sustained activation of primary nociceptors, which causes pain. In mammals, acid-sensing ion channels (ASICs) are the primary acid sensors; however, Na+/H+ exchangers (NHEs) and TRPV1 receptors also contribute to tissue acidification sensing. ASICs, NHEs, and TRPV1 receptors are found to be expressed in nociceptive nerve fibers. ASIC inhibitors reduce peripheral acid-induced hyperalgesia and suppress inflammatory pain. Also, it was shown that pharmacological inhibition of NHE1 promotes nociceptive behavior in acute pain models, whereas inhibition of TRPV1 receptors gives relief. The murine skin-nerve preparation was used in this study to assess the activation of native polymodal nociceptors by mild acidification (pH 6.1). We have found that diminazene, a well-known antagonist of ASICs did not suppress pH-induced activation of CMH-fibers at concentrations as high as 25 μM. Moreover, at 100 μM, it induces the potentiation of the fibers’ response to acidic pH. At the same time, this concentration virtually completely inhibited ASIC currents in mouse dorsal root ganglia (DRG) neurons (IC50 = 17.0 ± 4.5 μM). Non-selective ASICs and NHEs inhibitor EIPA (5-(N-ethyl-N-isopropyl)amiloride) at 10 μM, as well as selective NHE1 inhibitor zoniporide at 0.5 μM induced qualitatively the same effects as 100 μM of diminazene. Our results indicate that excitation of afferent nerve terminals induced by mild acidification occurs mainly due to the NHE1, rather than acid-sensing ion channels. At high concentrations, diminazene acts as a weak blocker of the NHE. It lacks chemical similarity with amiloride, EIPA, and zoniporide, so it may represent a novel structural motif for the development of NHE antagonists. However, the effect of diminazene on the acid-induced excitation of primary nociceptors remains enigmatic and requires additional investigations

    Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm

    Get PDF
    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100 μM)-induced currents with an IC50 value of 24.7 μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca2+-dependent Cl- channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [125I] -bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α7 nACh receptor indicated that thujone suppressed choline induced Ca2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25 mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory

    Neuraminidase Inhibition Primes Short-Term Depression and Suppresses Long-Term Potentiation of Synaptic Transmission in the Rat Hippocampus

    Get PDF
    Neuraminidase (NEU) is a key enzyme that cleaves negatively charged sialic acid residues from membrane proteins and lipids. Clinical and basic science studies have shown that an imbalance in NEU metabolism or changes in NEU activity due to various pathological conditions parallel with behavior and cognitive impairment. It has been suggested that the decreases of NEU activity could cause serious neurological consequences. However, there is a lack of direct evidences that modulation of endogenous NEU activity can impair neuronal function. Using combined rat entorhinal cortex/hippocampal slices and a specific inhibitor of NEU, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (NADNA), we examined the effect of downregulation of NEU activity on different forms of synaptic plasticity in the hippocampal CA3-to-CA1 network. We show that NEU inhibition results in a significant decrease in long-term potentiation (LTP) and an increase in short-term depression. Synaptic depotentiation restores LTP in NADNApretreated slices to the control level. These data suggest that short-term NEU inhibition produces the LTP-like effect on neuronal network, which results in damping of further LTP induction. Our findings demonstrate that downregulation of NEU activity could have a major impact on synaptic plasticity and provide a new insight into the cellular mechanism underlying behavioral and cognitive impairment associated with abnormal metabolism of NEU

    Selective impairment of GABAergic synaptic transmission in the flurothyl model of neonatal seizures.

    No full text
    International audienceNeonatal seizures can result in long-term adverse consequences including alteration of seizure susceptibility and impairment in spatial memory. However, little is known about the effects of neonatal seizures on developmental changes occurring in synaptic transmission during the first postnatal weeks. The purpose of the present study was to examine the effect of neonatal seizures on several aspects of gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission in the developing rat hippocampus. Flurothyl was used to induce multiple recurrent seizures in rat pups during the first postnatal days. Whole-cell patch-clamp recordings from the hippocampal CA3 pyramidal cell and extracellular recordings from the CA3 pyramidal cell layer were made in slice preparations. In rats that experienced neonatal seizures the amplitude of spontaneous inhibitory postsynaptic currents at P15-17 was decreased by 27% compared with controls, whereas neither frequency nor the kinetic properties were altered. Neonatal seizures did not affect the timing of the developmental switch in the GABAA signaling from excitatory to inhibitory. None of the studied parameters of glutamatergic postsynaptic currents was different between the flurothyl and control groups, including the amplitude and frequency of the spontaneous excitatory postsynaptic currents, the ratio of the amplitudes and frequencies of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)-mediated spontaneous postsynaptic currents, and the kinetics of AMPA and NMDA mediated postsynaptic currents in the age groups P8-10 and P15-17. We suggest that the selective depression of the amplitude of GABAergic synaptic responses may contribute to the adverse neurological and behavioral consequences that occur following neonatal seizures
    corecore