114 research outputs found

    Le gène hairless de la souris : Fonctions à la racine du poil et au coeur d’une subtile pléiotropie

    Get PDF
    Le gène hairless (hr) des mammifères code pour une protéine nucléaire impliquée dans le contrôle du renouvellement du follicule pileux. Cette protéine est un cofacteur de récepteurs nucléaires d’hormones qui régulent la transcription de gènes cibles au cours de la différentiation de l’épiderme et du cycle du poil. La protéine Hairless (HR) fait partie de grands complexes multiprotéiques capables de réprimer la transcription, en association avec des facteurs de remodelage de la chromatine comme les histones désacétylases. Chez les mammifères, le locus hairless est la cible de nombreuses mutations alléliques dont les effets sont pléiotropiques. Ces altérations entraînent l’apparition d’un phénotype cutané complexe, caractérisé par la perte progressive et irréversible d’un pelage d’apparence normale au cours des premières semaines de vie post-natale. L’analyse de la littérature sur le gène hairless chez la souris et chez l’homme permet d’attribuer des différences morphologiques spécifiques à chaque mutant, aussi bien au niveau de l’épiderme et du follicule pileux que dans d’autres tissus où le gène est exprimé au cours du développement. Ces résultats suggèrent que l’intégrité du gène hairless est requise pour le déroulement correct de la morphogenèse d’organes aussi différents que l’épiderme, l’oreille interne, l’ovaire ou le thymus. Le gène hairless semble ainsi faire partie de circuits et de cascades d’interactions géniques dont le contrôle moléculaire est fondamentalement inconnu. La variété des phénotypes alléliques souligne l’importance de l’analyse moléculaire du locus hairless pour identifier les altérations géniques impliquées dans les différentes mutations détectées. Les recherches concernant la mutation hairless ont été particulièrement dynamiques pendant les dernières années, depuis que l’homologue de ce gène a pu être mis en évidence chez l’homme. Cependant, un bon nombre de questions reste en suspens, notamment quant au site exact d’activité du gène hairless au sein des nombreuses populations cellulaires du follicule pileux, son rôle précis au cours de la morphogenèse, sa localisation au sein des voies de signalisation, ainsi que l’identité des partenaires et des cibles de la protéine Hairless.The hairless gene in mammals encodes a nuclear factor that is highly expressed in skin and appears to control hair follicle integrity and cycling. In the absence of a normal and functional Hairless (Hr) protein, the hair bulb undergoes premature apoptosis during the first catagen stage of the hair cycle. The most striking effects of the mutation are loss of hair follicles and formation of epidermal utricles and dermal cysts. The hairless gene expression appears to be widespread and temporally regulated. The gene is strongly expressed in different compartments of the brain. Hairless mRNAs were detected in cartilage, gonads, thymus and colon. In addition to alopecia, hairless mice strains show subtle defects in the development and differentiation of various tissues and organs. The Hr protein is localised in cell nuclei and functions as a transcriptional regulator. Although its role has not been resolved in molecular terms, it was demonstrated that Hr is able to interact with multiple nuclear hormone receptors. Hr seems to be a part of a large multiprotein complex capable to repress transcription by its association to chromatin remodelling factors such as histone deacetylases. Recent experimental data suggest that Hr might be involved in Hox gene regulation, cell adhesion modulation and progenitor cells identity. At least in the skin, but probably in other organs, the Hr repressor seems to be responsible for the timing of epithelial cells differentiation

    Salvia fruticosa Induces Vasorelaxation in Rat Isolated Thoracic Aorta: Role of the PI3K/Akt/eNOS/NO/cGMP Signaling Pathway

    Get PDF
    Salvia fruticosa (SF) Mill. is traditionally used for its antihypertensive actions. However, little is known about its pharmacologic and molecular mechanisms of action. Here we determined the effects of an ethanolic extract of SF leaves on rings of isolated thoracic aorta from Sprague-Dawley rats. Our results show that SF extract increased nitric oxide production and relaxed endothelium-intact rings in a dose-dependent (0.3 µg/ml–1 mg/ml) manner, and the maximum arterial relaxation (Rmax) was significantly reduced with endothelium denudation. Pretreatment of endothelium-intact rings with L-NAME (a non-selective inhibitor of nitric oxide synthase, 100 µM), or ODQ (an inhibitor of soluble guanylyl cyclase, 10 µM) significantly diminished SF-mediated vasorelaxation. Furthermore, SF induced Akt phosphorylation as well as increased cGMP levels in rings treated with increasing doses of SF. Prior exposure to PI3K inhibitors, wortmannin (0.1 µM) or LY294002 (10 µM), decreased cGMP accumulation and attenuated the SF-induced vasorelaxation by approximately 50% (Rmax). SF-evoked relaxation was not affected by indomethacin, verapamil, glibenclamide, tetraethylammonium, pyrilamine or atropine. Taken together, our results indicate that SF induces endothelium-dependent vasorelaxation through the PI3K/Akt/eNOS/NO/sGC/cGMP signaling pathway. Our data illustrate the health-orientated benefits of consuming SF which may act as an antihypertensive agent to reduce the burden of cardiovascular complications.Scopu

    Marjoram Relaxes Rat Thoracic Aorta Via a PI3-K/eNOS/cGMP Pathway.

    Get PDF
    Despite pharmacotherapeutic advances, cardiovascular disease (CVD) remains the primary cause of global mortality. Alternative approaches, such as herbal medicine, continue to be sought to reduce this burden. is recognized for many medicinal values, yet its vasculoprotective effects remain poorly investigated. Here, we subjected rat thoracic aortae to increasing doses of an ethanolic extract of (OME). OME induced relaxation in a dose-dependent manner in endothelium-intact rings. This relaxation was significantly blunted in denuded rings. N(ω)-nitro-l-arginine methyl ester (L-NAME) or 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) significantly reduced the OME-induced vasorelaxation. Cyclic guanosine monophosphate (cGMP) levels were also increased by OME. Moreover, wortmannin or LY294002 significantly reduced OME-induced vasorelaxation. Blockers of ATP-sensitive or Ca2+-activated potassium channels such as glibenclamide or tetraethylamonium (TEA), respectively, did not significantly affect OME-induced relaxation. Similarly, verapamil, a Ca channel blocker, indomethacin, a non-selective cyclooxygenase inhibitor, and pyrilamine, a H1 histamine receptor blocker, did not significantly modulate the observed relaxation. Taken together, our results show that OME induces vasorelaxation via an endothelium-dependent mechanism involving the phosphoinositide 3-kinase (PI3-K)/ endothelial nitric oxide (NO) synthase (eNOS)/cGMP pathway. Our findings further support the medicinal value of marjoram and provide a basis for its beneficial intake. Although consuming marjoram may have an antihypertensive effect, further studies are needed to better determine its effects in different vascular beds

    Rhus coriaria L. (Sumac) evokes endothelium-dependent vasorelaxation of rat aorta: Involvement of the cAMP and cGMP pathways

    Get PDF
    Rhus coriaria L. (sumac) is widely used in traditional remedies and cuisine of countries of the Mediterranean as well as Central and South-West Asia. Administration of sumac to experimental models and patients with diverse pathological conditions generates multifaceted propitious effects, including the quality as a vasodilator. Together, the effects are concertedly channeled toward cardiovasobolic protection. However, there is paucity of data on the mechanism of action for sumac’s vasodilatory effect, an attribute which is considered to be advantageous for unhealthy circulatory system. Accordingly, we sought to determine the mechanisms by which sumac elicits its vasorelaxatory effects. We deciphered the signaling networks by application of a range of pharmacological inhibitors, biochemical assays and including the quantification of cyclic nucleotide monophosphates. Herein, we provide evidence that an ethanolic extract of sumac fruit, dose-dependently, relaxes rat isolated aorta. The mechanistic effect is achieved via stimulation of multiple transducers namely PI3-K/Akt, eNOS, NO, guanylyl cyclase, cGMP, and PKG. Interestingly, the arachidonic acid pathway (cyclooxygenases), adenylyl cyclase/cAMP and ATP-dependent potassium channels appear to partake in this sumac-orchestrated attenuation of vascular tone. Clearly, our data support the favorable potential cardio-vasculoprotective action of sumac

    Carnosol Induces p38-Mediated ER Stress Response and Autophagy in Human Breast Cancer Cells

    Get PDF
    We recently reported that carnosol induces ROS-dependent autophagy and apoptosis in breast cancer cells. We also reported that carnosol inhibits breast cancer cell migration, invasion, and in ovo tumor growth, as well as targets STAT3, PCAF, and p300 to proteasome degradation. Here, we investigated the molecular mechanisms underlying its anti-malignant activity in breast cancer. We report that carnosol induces a ROS-dependent type I and type II programmed cell death (PCD-I or PCD-II, respectively), which occurred independently of each other. Indeed, chemical inhibition of autophagy had no effect on the induction of apoptosis, evident by the absence of cleaved PARP. Electron microscopy revealed that carnosol-treated cells exhibited enlarged endoplasmic reticulum, characteristic of ER stress. Markers of the three unfolded protein response pathways (PERK, IRE-1 α, and ATF6), namely ATF4, CHOP, phospho-IRE-1α, XBP1S, and cleaved ATF6 were upregulated in a ROS-dependent manner. In addition, carnosol induced a ROS-dependent activation of p38MAPK, increased the overall level of protein polyubiquitination, and targeted mTOR protein to proteasome degradation. Interestingly, inhibition of p38MAPK, by SB202190 and 203580, reduced cell death, selectively blocked the induction of IRE-1α and ATF6 UPR sensors and inhibited autophagy. In addition, inhibition of p38 reduced the carnosol-induced polyubiquitination and rescued mTOR, PCAF, and STAT3 from proteasomal degradation. Importantly, activation of PERK sensors and induction of apoptosis occurred independently of p38 activation. Taken together, our results suggest that ROS-dependent induced-ER stress contributes to carnosol-induced apoptotic and autophagic cell death in breast cancer cells, and further confirm that carnosol is a promising agent for breast cancer therapy

    Repurposing Ivermectin for COVID-19: Molecular Aspects and Therapeutic Possibilities

    Get PDF
    As of January 2021, SARS-CoV-2 has killed over 2 million individuals across the world. As such, there is an urgent need for vaccines and therapeutics to reduce the burden of COVID-19. Several vaccines, including mRNA, vector-based vaccines, and inactivated vaccines, have been approved for emergency use in various countries. However, the slow roll-out of vaccines and insufficient global supply remains a challenge to turn the tide of the pandemic. Moreover, vaccines are important tools for preventing the disease but therapeutic tools to treat patients are also needed. As such, since the beginning of the pandemic, repurposed FDA-approved drugs have been sought as potential therapeutic options for COVID-19 due to their known safety profiles and potential anti-viral effects. One of these drugs is ivermectin (IVM), an antiparasitic drug created in the 1970s. IVM later exerted antiviral activity against various viruses including SARS-CoV-2. In this review, we delineate the story of how this antiparasitic drug was eventually identified as a potential treatment option for COVID-19. We review SARS-CoV-2 lifecycle, the role of the nucleocapsid protein, the turning points in past research that provided initial 'hints' for IVM's antiviral activity and its molecular mechanism of action- and finally, we culminate with the current clinical findings

    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms

    Get PDF
    Cancer is the second most life-threatening disease and has become a global health and economic problem worldwide. Due to the multifactorial nature of cancer, its pathophysiology is not completely understood so far, which makes it hard to treat. The current therapeutic strategies for cancer lack the efficacy due to the emergence of drug resistance and the toxic side effects associated with the treatment. Therefore, the search for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Propolis is a mixture of resinous compounds containing beeswax and partially digested exudates from plants leaves and buds. Its chemical composition varies widely depending on the bee species, geographic location, plant species, and weather conditions. Since ancient times, propolis has been used in many conditions and aliments for its healing properties. Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties. In recent years, extensive in vitro and in vivo studies have suggested that propolis possesses properties against several types of cancers. The present review highlights the recent progress made on the molecular targets and signaling pathways involved in the anticancer activities of propolis. Propolis exerts anticancer effects primarily by inhibiting cancer cell proliferation, inducing apoptosis through regulating various signaling pathways and arresting the tumor cell cycle, inducing autophagy, epigenetic modulations, and further inhibiting the invasion and metastasis of tumors. Propolis targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, β-catenin, ERK1/2, MAPK, and NF-κB. Possible synergistic actions of a combination therapy of propolis with existing chemotherapies are also discussed in this review. Overall, propolis, by acting on diverse mechanisms simultaneously, can be considered to be a promising, multi-targeting, multi-pathways anticancer agent for the treatment of various types of cancers

    Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation

    Get PDF
    Here, we investigated the anticancer effect of Rhus coriaria on three breast cancer cell lines. We demonstrated that Rhus coriaria ethanolic extract (RCE) inhibits the proliferation of these cell lines in a time- and concentration-dependent manner. RCE induced senescence and cell cycle arrest at G1 phase. These changes were concomitant with upregulation of p21, downregulation of cyclin D1, p27, PCNA, c-myc, phospho-RB and expression of senescence-associated β-galactosidase activity. No proliferative recovery was detected after RCE removal. Annexin V staining and PARP cleavage analysis revealed a minimal induction of apoptosis in MDA-MB-231 cells. Electron microscopy revealed the presence of autophagic vacuoles in RCE-treated cells. Interestingly, blocking autophagy by 3-methyladenine (3-MA) or chloroquine (CQ) reduced RCE-induced cell death and senescence. RCE was also found to activate p38 and ERK1/2 signaling pathways which coincided with induction of autophagy. Furthermore, we found that while both autophagy inhibitors abolished p38 phosphorylation, only CQ led to significant decrease in pERK1/2. Finally, RCE induced DNA damage and reduced mutant p53, two events that preceded autophagy. Our findings provide strong evidence that R. coriaria possesses strong anti-breast cancer activity through induction of senescence and autophagic cell death, making it a promising alternative or adjunct therapeutic candidate against breast cancer.UAEU Program for Advanced Research (Grant 31S111-UPAR) and by the Zayed Center for Health Sciences (ZCHS) research grant (grant 31R021) and College of Science Individual Research Grant (grant 31S123) to Rabah Iratni

    Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFÎşB and nitric oxide pathways

    Get PDF
    Recently, we reported that Rhus coriaria exhibits anticancer activities by promoting cell cycle arrest and autophagic cell death of the metastatic triple negative MDA-MB-231 breast cancer cells. Here, we investigated the effect of Rhus coriaria on the migration, invasion, metastasis and tumor growth of TNBC cells. Our current study revealed that non-cytotoxic concentrations of Rhus coriaria significantly inhibited migration and invasion, blocked adhesion to fibronectin and downregulated MMP-9 and prostaglandin E2 (PgE2). Not only did Rhus coriaria decrease their adhesion to HUVECs and to lung microvascular endothelial (HMVEC-L) cells, but it also inhibited the transendothelial migration of MDA-MB-231 cells through TNF-α-activated HUVECs. Furthermore, we found that Rhus coriaria inhibited angiogenesis, reduced VEGF production in both MDA-MB-231 and HUVECs and downregulated the inflammatory cytokines TNF-α, IL-6 and IL-8. The underlying mechanism for Rhus coriaria effects appears to be through inhibiting NFκB, STAT3 and nitric oxide (NO) pathways. Most importantly, by using chick embryo tumor growth assay, we showed that Rhus coriaria suppressed tumor growth and metastasis in vivo. The results described in the present study identify Rhus coriaria as a promising chemopreventive and therapeutic candidate that modulate triple negative breast cancer growth and metastasis.UAEU Program for Advanced Research (Grant 31S111-UPAR), the Zayed Center for Health Sciences (ZCHS) research grant (grant 31R021) and the Terry Fox Foundation Grant (2013) to Rabah Iratni
    • …
    corecore