63 research outputs found

    Nanocátalysts for oxygen removal from biomass derived biofuel

    Get PDF
    The use of bio-energy as a renewable alternative to fossil fuels is nowadays attracting more and more attention. Bio-fuel from biomass seems to be a potential energy substitute for fossil fuels since it is a renewable resource that could contribute to sustainable development and global environmental preservation and it appears to have significant economic potential. Liquid fuels can be obtained from fast pyrolysis of lignocellulosic biomass, where fast pyrolysis is a promising route because the process takes place at moderate temperatures, in absence of air and with a short hot vapor residence time. However, these liquid fuels have poor quality due to their low volatility, high viscosity, low heating value, a high oxygen content and poor chemical stability. This high oxygen is due to the presence of oxygen-containing compounds such as alcohols, aldehydes, ketones, furans and phenols. In this sense, catalytic hydrodeoxygenation (HDO) is one the most efficient processes to remove oxygen from these liquid fuels. In this context, the catalyst design is of upmost importance to achieve a high degree of deoxygenation, and bifunctional catalysts are required to achieve high degrees of activity. Noble metal and non-noble metal based catalysts will be evaluated in HDO of model molecules in order to get further insight about the important role of the active phase. Transition metal phosphides have shown excellent catalytic performances due to their good hydrogen transfer properties that diminishes the amount of metal exposed, avoiding, as much as possible, the deactivation, and modifies the electronic density of the catalyst leading to solids that favors the HDO. In addition these phosphides show bifunctional catalytic properties (metallic sites for hydrogenation and acid sites for cracking, methyl transfer reaction, dehydration and isomerization).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Enseñanza-aprendizaje de contenido académico en inglés: análisis de una innovación/intervención/experiencia en un grado no bilingüe

    Get PDF
    La estrategia nacional de enseñanza superior dictada por la CRUE y la institucional de la Universidad de Málaga (UMA) afronta el reto de ofrecer una enseñanza de calidad en un idioma distinto a la lengua materna, mejorando la capacidad y habilidades lingüísticas del alumnado en una lengua extranjera. En el trabajo que presentamos, se aborda la innovación docente en las aulas universitarias mediante la estrategia denominada aprendizaje invertido, con la intención de favorecer situaciones comunicativas en lenguas extranjeras y entornos académicos bilingües a estudiantes del Grado de Ingeniería de la Energía. Más concretamente, se ha aplicado a la enseñanza de Química en alumnos que no van a ser Químicos y que además no han cursado esta asignatura en bachillerato, por lo que la estrategia docente en este caso aborda a una doble vertiente: la enseñanza de una materia ajena para muchos y que además, algunos contenidos se van a impartir en una segunda lengua. Se ha optado por una estrategia innovadora e integral que requiere que las horas docentes en el aula sean muy prácticas, y que la indagación e introducción de contenidos se desarrolle fuera de ella, favoreciendo el aprendizaje significativo en una lengua extranjera.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Pt-Fe2O3 based catalysts for anisole hydrodeoxygenation

    Get PDF
    The depletion of fossil fuels along with massive emissions of greenhouse gases (GHG) emissions are serious issues facing society nowadays. Considering that almost a quarter of fossil fuel consumption is associated with the transport sector, the scientific community has focused a great deal of its research to the quest of alternative environmentally friendly technologies and products with minimum GHG emissions derived from renewable energy sources. In this context, lignocellulosic biomass has demonstrated a great potential, since from its fast pyrolysis a bio-oil with interesting properties can be obtained to be used as liquid fuel for internal combustion engines. However, this bio-oil contains a considerable percentage of water and oxygenated compounds that impoverishes its quality making it unstable, acid, corrosive and with low calorific value. Thus, hydrotreating technologies like hydrodeoxygenation reaction are essential to upgrade bio-oil by means of removing oxygen from oxygenated compounds. The hydrodeoxygenation reaction usually takes places at high temperature and moderate hydrogen pressure, in the presence of a bifunctional catalyst that, on the one hand, promotes the oxygen removal with acid sites and, on the other hand, activates the hydrogen molecule in metallic hydrogenating sites. Regarding the latter function, noble metals like Pt, Ru or Pd have demonstrated outstanding hydrogenation capability even with low metal loading. To maximise metal dispersion, these noble metals are supported on mesoporous solids that in turn provide the moderate acidity necessary to remove oxygen heteroatom. In this work, supported Pt on Fe2O3-containing SBA-15 were tested in the HDO reaction of anisole at 275 ºC and 30 bar in a fixed-bed reactor in continuous down flow. Pt was added in 1 wt. % as the hydrogenating metal and different Fe2O3 loadings (5 wt. %, 15 wt. % and 30 wt. %) as the oxyphilic and acid counterpart.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Iniciación al bilingüismo a través del trabajo colaborativo en el Grado de Educación Social. Una investigación-acción en el aula no bilingüe.

    Get PDF
    La sociedad del siglo XXI plantea nuevas exigencias a la ciudadanía puesto que en un mundo globalizado los retos que se presentan requieren soluciones multilaterales. En este contexto, la internacionalización genera nuevas oportunidades en la universidad, abriendo “las posibilidades del alumnado para trabajar en un mundo global e intercultural” (Estrategia Internacionalización UMA, 2013; p.4). Las exigencias del nuevo entorno obligan a plantear una orientación internacional en todas las áreas de actividad, incluida la enseñanza. Así, la Estrategia de Internacionalización de la Universidad de Málaga tiene como objetivo fundamental: “Aumentar la proyección internacional de la Universidad como centro docente e investigador, de acuerdo a la misión y visión expresada en el III Plan Estratégico de la institución.” (Ibid., p.19), de acuerdo con el III Plan Estratégico de la Universidad de Málaga, la Agenda de la UE para la Modernización e Internacionalización de la Educación Superior, la Estrategia de Internacionalización de la Educación Superior en la Unión Europea y los documentos preliminares de la Estrategia de Internacionalización de Universidades del Ministerio de Educación, Cultura y Deporte. En favor de este proceso, el siguiente trabajo presenta una investigación-acción de iniciación al bilingüismo en el aula, realizada con alumnado de 4º curso de Grado en Educación Social en la Universidad de Málaga en una asignatura optativa. La propuesta consiste en elaborar por equipos un glosario en inglés como segunda lengua; con el fin de buscar posteriormente recursos digitales en este idioma para la realización de sus proyectos finales, además de redactar parcialmente y hacer parte de la presentación oral en inglés. Al finalizar el cuatrimestre se comprueba que ha aumentado la motivación por el aprendizaje a través de la segunda lengua, así como la satisfacción del alumnado con la asignatura, percibiéndose a sí mismo más competente para la comunicación en inglés.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Nanoestructuras de ceria-titania para fotodegradar azul de metileno con luz solar simulada

    Get PDF
    En los últimos años la protección ambiental y el uso de fuentes de energía renovables son dos objetivos principales en la investigación química. La energía solar se puede aprovechar para la degradación fotocatalítica de moléculas orgánicas contaminantes, hormonas o medicamentos, tanto en el aire, en el agua, como en las superficies, porque la luz solar es capaz de descomponerlas [1]. A pesar de la gran cantidad de aplicaciones fotocatalíticas de la titania (TiO2), fotocatalizador no tóxico, de bajo costo y muy prometedor [2], hay algunos factores críticos que limitan su fotoactividad. El principal es el valor de su salto de energía, que limita su uso como fotocatalizador en la región UV del espectro. Con el objetivo principal de extender su uso a la región visible del espectro, en literatura se ha propuesto el depósito de metales nobles en su superficie, modificaciones superficiales, así como el dopaje con iones de metales de transición o elementos de tierras raras. En este sentido, el uso de ceria (CeO2) ha atraído una gran atención debido a propiedades como su biocompatibilidad, inercia química así como su actividad en reacciones de oxidación, relacionada con la formación vacantes de oxígeno en su superficie [3]. Se ha comprobado que el sistema oxídico mixto CeO2-TiO2 es más fotoactivo que la titania pura debido a la disminución del salto de energía y a la mejora en la movilidad de los excitones. Este trabajo tiene como objetivo desarrollar fotocatalizadores basados en nanoestructuras de titania que sean activas en el visible, dopando la matriz de titania con cerio. Principalmente se pretende evaluar tanto el papel del cerio como la morfología del nanomaterial en la respuesta fotocatalítica bajo luz UV y solar.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Volcanic Glass and its Uses as Adsorbent

    Get PDF
    Volcanic glasses are an amorphous phyllosilicates formed by the fast cooling of the magma. The physicochemical properties of volcanic glasses are directly related to their chemical composition. Thus, the rhyolitic magma, which presents the highest SiO2 percentage, displays a high viscosity, which leads to explosive eruptions by the ex-solution of H2O, CO2, and SO2, when the pressure diminishes generates a macroporous structure with interesting applications in construction, as abrasive, acoustic, filter as well as in the agriculture field. The macroporosity of volcanic glass allows to host large molecules as biomolecules, tensoactives, or dyes. On the other hand, the existence of hydroxyl groups in this amorphous aluminosilicate also favors the adsorption of cations and anions, so the volcanic glass is an economical adsorbent to retain heavy metals or radioactive cations

    Silica-Related Catalysts for CO2 Transformation into Methanol and Dimethyl Ether

    Get PDF
    The climate situation that the planet is experiencing, mainly due to the emission of greenhouse gases, poses great challenges to mitigate it. Since CO2 is the most abundant greenhouse gas, it is essential to reduce its emissions or, failing that, to use it to obtain chemicals of industrial interest. In recent years, much research have focused on the use of CO2 to obtain methanol, which is a raw material for the synthesis of several important chemicals, and dimethyl ether, which is advertised as the cleanest and highest eciency diesel substitute fuel. Given that the bibliography on these catalytic reactions is already beginning to be extensive, and due to the great variety of catalysts studied by the dierent research groups, this review aims to expose the most important catalytic characteristics to take into account in the design of silica-based catalysts for the conversion of carbon dioxide to methanol and dimethyl ether

    Ruthenium incorporation into hydrotalcites-derived mixed oxides for phenol hydrogenation: Role of Mg/Al molar ratio

    Get PDF
    In this work the catalytic behaviour of Ru supported on mixed oxides derived from non-commercial hydrotalcites in phenol hydrogenation was studied in a batch reactor working at 30 bar and 200 °C. To this end, a set of catalysts with 2 wt% Ru and a Mg/Al molar ratio of 1, 2, 3 and 4 was synthesized. The catalysts were tested in phenol hydrogenation to assess the influence of Mg/Al ratio on the catalytic performance in terms of conversion and selectivities to cyclohexanol and cyclohexanone. Physicochemical characterization was performed by X-ray Diffraction (XRD), N2 adsorption-desorption isotherms, dispersive X-ray spectroscopy in scanning transmission electron microscopy (EDS-STEM), CO chemisorption at 35 °C, CO2 and NH3 thermoprogrammed desorption (TPD) and X-ray Photoelectron Spectroscopy (XPS). The Mg/Al molar ratio employed determined the catalytic response of the resulting catalysts, obtaining the best catalytic performance (95.9 % conversion and 47.4 % cyclohexanone selectivity) with the sample with the lowest Mg/Al ratio, RuMA1. XRD results showed that in RuMA1 catalyst the hydrotalcite structure was completely transformed into the corresponding mixed oxide after thermal treatment and was also the only one in which MgAl2O4 spinel was not formed. In addition, RuMA1 presented the highest specific surface area, the greatest Ru dispersion, as evidenced by CO-chemisorption and EDX-STEM analysis, as well as a good balance between basic and acid sites and a greater proportion of Bronsted acid sites that also explain it greater selectivity to cyclohexanol.This publication is part of the R&D project PID2021-126235OB-C32 funded by MCIN/ AEI/10.13039/501100011033/ and FEDER funds. Funding for open access charge: Universidad de Málaga / CBUA. IBM thanks University of Malaga for a postdoctoral grant

    Materials Design for N2O Capture: Separation in Gas Mixtures

    Get PDF
    The adsorption of greenhouse gases (GHG) as a method to reduce their emissions into the atmosphere is an alternative that is easier to implement industrially and cheaper than other existing technologies, such as chemical capture, cryogenic separation, or membrane separation. The vast majority of works found in the literature have focused their efforts on capturing CO2 as it is the largest GHG. However, although N2O emissions are not as large as CO2, the impact that N2O has on the stratosphere and climate is much larger in proportion, despite which there is not much research on N2O capture. Since both gases are usually emitted into the atmosphere together (along with other gases), it is necessary to design selective adsorbents capable of capturing and separating these gases from each other and from other gases, to mitigate the effects of climate change. This review aims to compile the existing information to date on porous adsorbents, the characteristics of the N2O adsorption processes and, above all, aims to focus the reader’s gaze on the importance of designing selective adsorbents for greenhouse gas mixtures.Partial funding for open access charge: Universidad de Málag

    Ru supported on Mg/Al hydrotalcites for phenol hydrogenation.

    Get PDF
    Cyclohexanone and cyclohexanol are high value-added products widely used in polymer and chemical industry as organic solvents in oil paints or varnishes [1] or as intermediates in nylon, oxalic acid, caprolactam and adipic acid syntheses [2]. These compounds have been traditionally obtained from cyclohexane oxidation, a tedious and energy consuming process with low selectivity for the desired cyclohexanone and cyclohexanol. Thus, hydrogenation of phenol has emerged as a promising alternative to the former process with greater selectivity and, considering that phenol could be obtained from the degradation of lignin, which is a widespread, sustainable, carbon neutral precursor, this synthetic route has gained the attention of the scientific community. It has been reported that in phenol hydrogenation, hydrogen is added to the aromatic ring by a spill-over mechanism in which both phenol and hydrogen are adsorbed on metal sites, and that the adsorption configuration is strongly related to the number of acid and basic sites around metal sites [3]. In addition, it is known that supports with acid-base properties and moderate specific surface area improve both thermal stability and metallic phase dispersion. With respect to metallic sites, noble metals like Pd or Ru are benchmark hydrogenating agents [4]. In this work, catalysts containing 2 wt.% Ru supported on non-commercial hydrotalcites with different Mg/Al molar ratios were tested in the hydrogenation of phenol in a batch reactor with semiautomatic sample collection working at 200 ºC and 30 bar. The catalysts were fully characterized by means of XRD, N2 adsorption-desorption at -196 ºC, XPS and HR-TEM.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Ministerio de Ciencia e Innovación (PID2021-126235OB-C32) Fondos FEDE
    corecore