140 research outputs found

    Paradoxical response to disseminated non-tuberculosis mycobacteriosis treatment in a patient receiving tumor necrosis factor-α inhibitor: a case report

    Get PDF
    Background: Biological agents such as tumor necrosis factor-α inhibitors are known to cause mycobacterium infections. Here, we report a disseminated non-tuberculosis case caused by TNF-α inhibitor therapy and a probable paradoxical response to antimycobacterial therapy.Case presentation: A 68-year-old man with relapsing polychondritis was refractory to glucocorticoid therapy; adalimumab was therefore administered in combination with oral glucocorticoids. Treatment with 40 mg of adalimumab led to rapid improvement of his clinical manifestations. The administration of tacrolimus (1 mg) was started as the dosage of oral glucocorticoids was tapered. However, the patient developed an intermittent high fever and productive cough 15 months after starting adalimumab treatment. A chest computed tomography scan revealed new granular shadows and multiple nodules in both lung fields with mediastinal lymphadenopathy, and Mycobacterium intracellulare was isolated from 2 sputum samples; based on these findings, the patient was diagnosed with non-tuberculosis mycobacteriosis. Tacrolimus treatment was discontinued and oral clarithromycin (800 mg/day), rifampicin (450 mg/day), and ethambutol (750 mg/day) treatment was initiated. However, his condition continued to deteriorate despite 4 months of treatment; moreover, paravertebral and subcutaneous abscesses developed and increased the size of the mediastinal lymphadenopathy. Biopsy of the mediastinal lymphadenopathy and a subcutaneous abscess of the right posterior thigh indicated the presence of Mycobacterium avium complex (MAC), and the diagnosis of disseminated non-tuberculosis mycobacteriosis was confirmed. Despite 9 months of antimycobacterial therapy, the mediastinal lymphadenopathy and paravertebral and subcutaneous abscesses had enlarged and additional subcutaneous abscesses had developed, although microscopic examinations and cultures of sputum and subcutaneous abscess samples yielded negative results. We considered this a paradoxical reaction similar to other reports in tuberculosis patients who had discontinued biological agent treatments, and increased the dose of oral glucocorticoids. The patient\u27s symptoms gradually improved with this increased dose and his lymph nodes and abscesses began to decrease in size.Conclusions: Clinicians should consider the possibility of a paradoxical response when the clinical manifestations of non-tuberculosis mycobacteriosis worsen in spite of antimycobacterial therapy or after discontinuation of tumor necrosis factor-α inhibitors. However, additional evidence is needed to verify our findings and to determine the optimal management strategies for such cases

    Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    Get PDF
    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure

    ERG3-encoding sterol C5,6-DESATURASE in Candida albicans Is required for virulence in an enterically infected invasive candidiasis mouse model

    Get PDF
    Gastrointestinal colonization by Candida species is considered the main source of candidemia. The ERG3 gene in Candida albicans encodes a sterol C5,6-desaturase, which is essential for ergosterol biosynthesis. Although ERG3 inactivation shows reduced virulence in mouse models of disseminated candidiasis, the role of ERG3 in intestinal infections is unknown. Here, we infected mice with the C. albicans strains CAE3DU3 and CAF2-1, containing mutant and wild-type ERG3, respectively, and studied gut infection and colonization by these strains. We found that the CAE3DU3 strain showed reduced colonization, pathogenesis, damage to gut mucosa, and chemokine production in the mouse model of invasive candidiasis. Additionally, mice inoculated with CAE3DU3 showed lower mortality than mice inoculated with CAF2-1 (p < 0.0001). Chemokines were less induced in the gut inoculated with CAE3DU3 than in the gut inoculated with CAF2-1. Histopathologically, ]although the wild-type gene was associated with a higher pathogenicity and invasion of the gut mucosa and liver tissues causing remarkable tissue necrosis, the erg3/erg3 mutant was associated with a higher accumulation of cells and lower damage to surrounding tissues than wild-type ERG3. These results establish that the ergosterol biosynthetic pathway may be associated with C. albicans gut colonization and subsequent dissemination

    Autophagy-Inducing Factor Atg1 Is Required for Virulence in the Pathogenic Fungus Candida glabrata

    Get PDF
    Candida glabrata is one of the leading causes of candidiasis and serious invasive infections in hosts with weakened immune systems. C. glabrata is a haploid budding yeast that resides in healthy hosts. Little is known about the mechanisms of C. glabrata virulence. Autophagy is a \u27self-eating\u27 process developed in eukaryotes to recycle molecules for adaptation to various environments. Autophagy is speculated to play a role in pathogen virulence by supplying sources of essential proteins for survival in severe host environments. Here, we investigated the effects of defective autophagy on C. glabrata virulence. Autophagy was induced by nitrogen starvation and hydrogen peroxide (H2O2) in C. glabrata.A mutant strain lacking CgAtg1, an autophagy-inducing factor, was generated and confirmed to be deficient for autophagy. The Cgatg1Δ strain was sensitive to nitrogen starvation and H2O2, died rapidly in water without any nutrients, and showed high intracellular ROS levels compared with the wild-type strain and the CgATG1-reconstituted strain in vitro. Upon infecting mouse peritoneal macrophages, the Cgatg1Δ strain showed higher mortality from phagocytosis by macrophages. Finally, in vivo experiments were performed using two mouse models of disseminated candidiasis and intra-abdominal candidiasis. The Cgatg1Δ strain showed significantly decreased CFUs in the organs of the two mouse models. These results suggest that autophagy contributes to C. glabrata virulence by conferring resistance to unstable nutrient environments and immune defense of hosts, and that Atg1 is a novel fitness factor in Candida species

    Toll-Like Receptor 4 Agonistic Antibody Promotes Innate Immunity against Severe Pneumonia Induced by Coinfection with Influenza Virus and Streptococcus pneumoniae

    Get PDF
    Coinfection with bacteria is a major cause of mortality during influenza epidemics. Recently, Toll-like receptor (TLR) agonists were shown to have immunomodulatory functions. In the present study, we investigated the effectiveness and mechanisms of the new TLR4 agonistic monoclonal antibody UT12 against secondary pneumococcal pneumonia induced by coinfection with influenza virus in a mouse model. Mice were intranasally inoculated with Streptococcus pneumoniae 2 days after influenza virus inoculation. UT12 was intraperitoneally administered 2 h before each inoculation. Survival rates were significantly increased and body weight loss was significantly decreased by UT12 administration. Additionally, the production of inflammatory mediators was significantly suppressed by the administration of UT12. In a histopathological study, pneumonia in UT12-treated mice was very mild compared to that in control mice. UT12 increased antimicrobial defense through the acceleration of macrophage recruitment into the lower respiratory tract induced by c-Jun N-terminal kinase (JNK) and nuclear factor kappaB (NF-κB) pathway- dependent monocyte chemoattractant protein 1 (MCP-1) production. Collectively, these findings indicate that UT12 promoted pulmonary innate immunity and may reduce the severity of severe pneumonia induced by coinfection with influenza virus and S. pneumoniae. This immunomodulatory effect of UT12 improves the prognosis of secondary pneumococcal pneumonia and makes UT12 an attractive candidate for treating severe infectious diseases

    Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells

    Get PDF
    Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoid and nonlymphoid tissues. We apply transcriptome and genomic distribution analyses to define a STAT5 gene signature in natural killer (NK) cells, the prototypical ILC subset, and provide a systems-based molecular rationale for its key functions downstream of IL-15. We also uncover surprising features of STAT5 behavior, most notably the wholesale redistribution that occurs when NK cells shift from tonic signaling to acute cytokine-driven signaling, and genome-wide coordination with T-bet, another key TF in ILC biology. Collectively, our data position STAT5 as a central node in the TF network that instructs ILC development, homeostasis, and function and provide mechanistic insights on how it works at cellular and molecular levels

    Efficacy of Combination Therapy with Oseltamivir Phosphate and Azithromycin for Influenza: A Multicenter, Open-Label, Randomized Study

    Get PDF
    Background: Macrolides have antibiotic and immunomodulatory activities, which may have a favorable effect on the clinical outcome of patients with infections, including influenza. This study aimed to evaluate the effects of combination therapy with an anti-influenza agent, oseltamivir, and a single-dose formulation of azithromycin (AZM), which has been used for influenza-related secondary pneumonia, on influenza patients. The primary endpoint was a change in the expression levels of inflammatory cytokines. Secondary endpoints were the time required for resolution of influenza-related symptoms, incidence of complications, and adverse reactions. Methods: Patients with seasonal influenza were enrolled in this multicenter, open-label, randomized study. Patients were stratified according to the presence of a high risk factor and were randomized to receive combination therapy with oseltamivir plus an extended-release formulation of AZM (combo-group) or oseltamivir monotherapy (mono-group). Results: We enrolled 107 patients and randomized them into the mono-group (56 patients) or the combo-group (51 patients). All patients were diagnosed with influenza A infection, and none of the patients had comorbid pneumonia. Statistically significant differences were not observed in the expression levels of inflammatory cytokines and chemokines between the 2 groups. The maximum temperature in the combo-group was lower than that in the mono-group on day 3 through day 5 (p = 0.048), particularly on day 4 (p = 0.037). Conclusion: To our knowledge, this is the first prospective, randomized, clinical trial of oseltamivir and AZM combination therapy for influenza. Although the difference in inflammatory cytokine expression level was not statistically significant, combination therapy showed an early resolution of some symptoms. Name of registry: University hospital Medical Information Network (UMIN). Trial Registration no.: UMIN000005371

    Virulence assessment of six major pathogenic Candida species in the mouse model of invasive candidiasis caused by fungal translocation

    Get PDF
    Gastrointestinal colonization has been considered as the primary source of candidaemia; however, few established mouse models are available that mimic this infection route. We therefore developed a reproducible mouse model of invasive candidiasis initiated by fungal translocation and compared the virulence of six major pathogenic Candida species. The mice were fed a low-protein diet and then inoculated intragastrically with Candida cells. Oral antibiotics and cyclophosphamide were then administered to facilitate colonization and subsequent dissemination of Candida cells. Mice infected with Candida albicans and Candida tropicalis exhibited higher mortality than mice infected with the other four species. Among the less virulent species, stool titres of Candida glabrata and Candida parapsilosis were higher than those of Candida krusei and Candida guilliermondii. The fungal burdens of C. parapsilosis and C. krusei in the livers and kidneys were significantly greater than those of C. guilliermondii. Histopathologically, C. albicans demonstrated the highest pathogenicity to invade into gut mucosa and liver tissues causing marked necrosis. Overall, this model allowed analysis of the virulence traits of Candida strains in individual mice including colonization in the gut, penetration into intestinal mucosa, invasion into blood vessels, and the subsequent dissemination leading to lethal infections

    Evaluation of Candida peritonitis with underlying peritoneal fibrosis and efficacy of micafungin in murine models of intra-abdominal candidiasis

    Get PDF
    Candida peritonitis is a crucial disease, however the optimal antifungal therapy regimen has not been clearly defined. Peritoneal fibrosis (PF)can be caused by abdominal surgery, intra-abdominal infection, and malignant diseases, and is also widely recognized as a crucial complication of long-term peritoneal dialysis. However, the influence of PF on Candida peritonitis prognosis remains unknown. Here, we evaluated the severity of Candida peritonitis within the context of PF and the efficacy of micafungin using mice. A PF mouse model was generated by intraperitoneally administering chlorhexidine gluconate. Candida peritonitis, induced by intraperitoneal inoculation of Candida albicans, was treated with a 7-day consecutive subcutaneous administration of micafungin. Candida infection caused a higher mortality rate in the PF mice compared with the control mice on day 7. Proliferative Candida invasion into the peritoneum and intra-abdominal organs was confirmed pathologically only in the PF mice. However, all mice in both groups treated with micafungin survived until day 20. Micafungin treatment tends to suppress inflammatory cytokines in the plasma 12 h after infection in both groups. Our results suggest that PF enhances early mortality in Candida peritonitis. Prompt initiation and sufficient doses of micafungin had good efficacy for Candida peritonitis, irrespective of the underlying PF
    corecore