195 research outputs found

    N6-methyladenosine is required for the hypoxic stabilization of specific mRNAs

    Get PDF
    Post-transcriptional regulation of mRNA during oxygen deprivation, or hypoxia, can affect the survivability of cells. Hypoxia has been shown to increase stability of a subset of ischemia-related mRNAs, including VEGF. RNA binding proteins and miRNAs have been identified as important for post-transcriptional regulation of individual mRNAs, but corresponding mechanisms that regulate global stability are not well understood. Recently, mRNA modification by N6-methyladenosine (m6A) has been shown to be involved in post-transcriptional regulation processes including mRNA stability and promotion of translation, but the role of m6A in the hypoxia response is unknown. In this study, we investigate the effect of hypoxia on RNA modifications including m6A. Our results show hypoxia increases m6A content of poly(A)+ messenger RNA (mRNA), but not in total or ribosomal RNA in HEK293T cells. Using m6A mRNA immunoprecipitation, we identify specific hypoxia-modified mRNAs, including glucose transporter 1 (Glut1) and c-Myc, which show increased m6A levels under hypoxic conditions. Many of these mRNAs also exhibit increased stability, which was blocked by knockdown of m6A-specific methyltransferases METTL3/14. However, the increase in mRNA stability did not correlate with a change in translational efficiency or the steady-state amount of their proteins. Knockdown of METTL3/14 did reveal that m6A is involved in recovery of translational efficiency after hypoxic stress. Therefore, our results suggest that an increase in m6A mRNA during hypoxic exposure leads to post-transcriptional stabilization of specific mRNAs and contributes to the recovery of translational efficiency after hypoxic stress

    The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion.

    Get PDF
    Glucose-stimulated insulin secretion (GSIS) is mediated in part by glucose metabolism-driven increases in ATP/ADP ratio, but by-products of mitochondrial glucose metabolism also play an important role. Here we investigate the role of the mitochondrial citrate/isocitrate carrier (CIC) in regulation of GSIS. Inhibition of CIC activity in INS-1-derived 832/13 cells or primary rat islets by the substrate analogue 1,2,3-benzenetricarboxylate (BTC) resulted in potent inhibition of GSIS, involving both first and second phase secretion. A recombinant adenovirus containing a CIC-specific siRNA (Ad-siCIC) dose-dependently reduced CIC expression in 832/13 cells and caused parallel inhibitory effects on citrate accumulation in the cytosol. Ad-siCIC treatment did not affect glucose utilization, glucose oxidation, or ATP/ADP ratio but did inhibit glucose incorporation into fatty acids and glucose-induced increases in NADPH/NADP+ ratio relative to cells treated with a control siRNA virus (Ad-siControl). Ad-siCIC also inhibited GSIS in 832/13 cells, whereas overexpression of CIC enhanced GSIS and raised cytosolic citrate levels. In normal rat islets, Ad-siCIC treatment also suppressed CIC mRNA levels and inhibited GSIS. We conclude that export of citrate and/or isocitrate from the mitochondria to the cytosol is an important step in control of GSIS

    Adipose Acyl-CoA Synthetase-1 Directs Fatty Acids toward β-Oxidation and Is Required for Cold Thermogenesis

    Get PDF
    Acyl-CoA synthetase-1 (ACSL) contributes 80% of total ACSL activity in adipose tissue and was believed to be essential for the synthesis of triacylglycerol. We predicted that an adipose-specific knockout of ACSL1 (Acsl1A−/−) would be lipodystrophic, but, compared to controls, Acsl1A−/− mice had 30% greater fat mass when fed a low fat diet, and gained weight normally when fed a high fat diet. Acsl1A−/− adipocytes incorporated [14C]oleate into glycerolipids normally, but fatty acid oxidation rates were 50–90% lower than in control adipocytes and mitochondria. Acsl1A−/− mice were markedly cold intolerant, and β3-adrenergic agonists did not increase oxygen consumption, despite normal adrenergic signaling in brown adipose tissue. The reduced adipose FA oxidation and marked cold intolerance of Acsl1A−/− mice indicate that normal activation of FA for oxidation in adipose tissue in vivo requires ACSL1. Thus, ACSL1 has a specific function in directing the metabolic partitioning of fatty acids towards β-oxidation

    Type-2-diabetes alters CSF but not plasma metabolomic and AD risk profiles in vervet monkeys

    Get PDF
    Epidemiological studies suggest that individuals with type 2 diabetes (T2D) have a twofold to fourfold increased risk for developing Alzheimer's disease (AD), however, the exact mechanisms linking the two diseases are unknown. In both conditions, the majority of pathophysiological changes, including glucose and insulin dysregulation, insulin resistance, and AD-related changes in Aβ and tau, occur decades before the onset of clinical symptoms and diagnosis. In this study, we investigated the relationship between metabolic biomarkers associated with T2D and amyloid pathology including Aβ levels, from cerebrospinal fluid (CSF) and fasting plasma of healthy, pre-diabetic (PreD), and T2D vervet monkeys (Chlorocebus aethiops sabaeus). Consistent with the human disease, T2D monkeys have increased plasma and CSF glucose levels as they transition from normoglycemia to PreD and diabetic states. Although plasma levels of acylcarnitines and amino acids remained largely unchanged, peripheral hyperglycemia correlated with decreased CSF acylcarnitines and CSF amino acids, including branched chain amino acid (BCAA) concentrations, suggesting profound changes in cerebral metabolism coincident with systemic glucose dysregulation. Moreover, CSF Aβ 40 and CSF Aβ 42 levels decreased in T2D monkeys, a phenomenon observed in the human course of AD which coincides with increased amyloid deposition within the brain. In agreement with previous studies in mice, CSF Aβ 40 and CSF Aβ 42 were highly correlated with CSF glucose levels, suggesting that glucose levels in the brain are associated with changes in Aβ metabolism. Interestingly, CSF Aβ 40 and CSF Aβ 42 levels were also highly correlated with plasma but not CSF lactate levels, suggesting that plasma lactate might serve as a potential biomarker of disease progression in AD. Moreover, CSF glucose and plasma lactate levels were correlated with CSF amino acid and acylcarnitine levels, demonstrating alterations in cerebral metabolism occurring with the onset of T2D. Together, these data suggest that peripheral metabolic changes associated with the development of T2D produce alterations in brain metabolism that lead to early changes in the amyloid cascade, similar to those observed in pre-symptomatic AD

    Glycerol-3-phosphate Acyltransferase (GPAT)-1, but Not GPAT4, Incorporates Newly Synthesized Fatty Acids into Triacylglycerol and Diminishes Fatty Acid Oxidation

    Get PDF
    Four glycerol-3-phosphate acyltransferase (GPAT) isoforms, each encoded by a separate gene, catalyze the initial step in glycerolipid synthesis; in liver, the major isoforms are GPAT1 and GPAT4. To determine whether each of these hepatic isoforms performs a unique function in the metabolism of fatty acid, we measured the incorporation of de novo synthesized fatty acid or exogenous fatty acid into complex lipids in primary mouse hepatocytes from control, Gpat1−/−, and Gpat4−/− mice. Although hepatocytes from each genotype incorporated a similar amount of exogenous fatty acid into triacylglycerol (TAG), only control and Gpat4−/− hepatocytes were able to incorporate de novo synthesized fatty acid into TAG. When compared with controls, Gpat1−/− hepatocytes oxidized twice as much exogenous fatty acid. To confirm these findings and to assess hepatic β-oxidation metabolites, we measured acylcarnitines in liver from mice after a 24-h fast and after a 24-h fast followed by 48 h of refeeding with a high sucrose diet to promote lipogenesis. Confirming the in vitro findings, the hepatic content of long-chain acylcarnitine in fasted Gpat1−/− mice was 3-fold higher than in controls. When compared with control and Gpat4−/− mice, after the fasting-refeeding protocol, Gpat1−/− hepatic TAG was depleted, and long-chain acylcarnitine content was 3.5-fold higher. Taken together, these data demonstrate that GPAT1, but not GPAT4, is required to incorporate de novo synthesized fatty acids into TAG and to divert them away from oxidation

    Neuronal CRTC-1 Governs Systemic Mitochondrial Metabolism and Lifespan via a Catecholamine Signal

    Get PDF
    SummaryLow energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARα ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging

    Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance

    Get PDF
    SummaryPrevious studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive β-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial β-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd−/− mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress

    Gut microbiome contributions to altered metabolism in a pig model of undernutrition

    Get PDF
    International audienceThe concept that gut microbiome-expressed functions regulate ponderal growth has important implications for infant and child health, as well as animal health. Using an intergenerational pig model of diet restriction (DR) that produces reduced weight gain, we developed a feature-selection algorithm to identify representative characteristics distinguishing DR fecal microbiomes from those of full-fed (FF) pigs as both groups consumed a common sequence of diets during their growth cycle. Gnotobiotic mice were then colonized with DR and FF microbiomes and subjected to controlled feeding with a pig diet. DR microbiomes have reduced representation of genes that degrade dominant components of late growth-phase diets, exhibit reduced production of butyrate, a key host-accessible energy source, and are causally linked to reduced hepatic fatty acid metabolism (β-oxidation) and the selection of alternative energy substrates. The approach described could aid in the development of guidelines for microbiome stewardship in diverse species, including farm animals, in order to support their healthy growth
    • …
    corecore