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SUPPLEMENTARY RESULTS 
Entropy-based method for microbial ecology research (EMMER) 
Mathematical framework – A mathematical procedure was needed for transferring a non-density 
matrix composed of CAZyme (or ASV) features to a density matrix that satisfies the requirements for 
calculating the vNE. For a density matrix D that has a set of eigenvalues 𝜆 = {𝜆", 𝜆, …, 𝜆#}, the vNE 
of D can be calculated as follows: 
 

𝐻 =	−(𝜆) log- 𝜆)
#

)

 

[1] 
 
Let matrix A be a non-density matrix that contains only real numbers, and matrix C be the covariance 
matrix of A. C satisfies the first two properties of a density matrix (a symmetric, positive semi-definite 
matrix; 1). Because the sum of eigenvalues equals the trace of a matrix (1), we can satisfy the third 
mathematical requirement of a density matrix (trace of one) by normalizing the eigenvalue by the sum 
of all eigenvalues (Fig. S2A). Let 𝛼 = {𝛼", 𝛼, …, 𝛼#} be the set of eigenvalues of C: 
 

𝛽) = 	
𝛼)
∑𝛼 

[2] 
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We used normalized eigenvalues (𝛽) from [2] to calculate the vNE: 

 

𝐻 =	−(𝛽) log- 𝛽)
#

)

 

[3] 
 
Feature selection and the reproducibility of information-rich feature calling – To evaluate the 
information content of each feature (column) in a non-density matrix, we calculated the vNE after 
systematically removing one column from the matrix at a time and generating a set of the vNE {𝐻", 
𝐻-, …, 𝐻#}. For example, we generated matrix 𝐴2 by removing the pth column from A, then followed 
the mathematical procedure described above to calculate the vNE (𝐻2). Removing a feature 
containing important information in the matrix will result in a marked change in vNE. A marked 
change in vNE is defined as the vNE above an upper or below a lower selection threshold (Fig. S2B): 
For initial analysis, thresholds were set at ± 2 standard deviations of values in {𝐻", 𝐻-, …, 
𝐻#}.	Using our previous example 𝐻2, if 𝐻2 is outside the selection thresholds, then the corresponding 
feature of the pth column in A was designated an “information-rich feature candidate”. If an 
information-rich feature candidate was nominated at least twice during jackknife resampling, that 
candidate was included in the final list of information-rich features (Fig. S2C). We calculated the 
reproducibility of information-rich feature calling by dividing the number of times that a specific 
feature was nominated as an information-rich feature candidate by the number of jackknife 
resampling runs. 
 
Threshold selection – Because of the shared procedure used for PCA and our mathematical 
framework, we reasoned that a PCA plot generated from information-rich features will retain the 
original data distribution generated from the full matrix in PCA space. Procrustes score s represents 
the similarity between the projections of the original input matrix prior to feature selection and an 
input matrix composed of information-rich features in PCA space. Procrustes score w represents the 
similarity between projections of the original input matrix and a matrix that only contains non-
information-rich features in PCA space. When EMMER selects features that recapitulate the 
projection of original input data in PCA space, we expect the dissimilarity score, calculated by 
dividing s by w, to be low. We refined the thresholds for selecting information-rich features by first 
describing the linear relationship between dissimilarity score and the number of information-rich 
features. We then chose a threshold corresponding to a dissimilarity score that had the greatest 
distance below the regression line (Fig. S2D). In practice, we used the standard deviation of {𝐻", 
𝐻-, …, 𝐻#} as the unit for feature-calling thresholds. The feature-calling threshold was subsequently 
optimized by testing all combinations of upper and lower thresholds from 1.5 to 2.5 units at 
increments of 0.25 unit (a unit corresponds to one standard deviation of {𝐻", 𝐻-, …, 𝐻#}) (Dataset 
S2). 
 
Improved computational accuracy – Calculating a covariance matrix can generate extremely small 
values; these small values can, in turn, decrease computational accuracy. After singular value 
decomposition (SVD), the square of singular values from an input matrix is equal to eigenvalues of a 
covariance matrix of that input matrix (1). Therefore, applying SVD in EMMER allows us to 
circumvent the covariance matrix generating step without changing the result of the vNE calculation. 
 
Identification of information-rich features that differentiate treatment groups in PCA space – 
Applying SVD also allowed us to identify information-rich features that differentiate treatment groups 
in PCA space. For given matrix B where rows represent animals and columns represent information-
rich microbial community features, the relationship between animals and specific principal 
components (PCs) is separated into a set of matrices {𝐵", 𝐵-, …, 𝐵4} after SVD (Fig. S3A). Each 
matrix can be expressed as: 
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𝐵) = 𝑈 × 𝐷) × 𝑉9 
[4] 

 
where 𝐵) preserves the relationship between animals and the ith PC. 𝑈 and 𝑉9are the left and right 
singular matrix, respectively. All elements in 𝐷) are zero except for element 𝑑),), which contains the ith 
singular value. 
 In the current study, we visualized our data in PCA plots that contained the first three 
principal components (PCs). Therefore, we sought to identify information-rich features that 
differentiate FF and DR in the first three PCs. Fig. S3A and equation [5] describe our method for 
cleaning the matrix by removing information beyond PC3: 
 

𝐵<<< = 𝑈 × (𝐷" + 𝐷- + 𝐷?) × 𝑉9 
[5] 

 
After cleaning the matrix, a linear regression model is built from 𝐵<<< by using treatment groups as the 
response and information-rich features as explanatory variables. Differentiating information-rich 
features are explanatory variables that pass a significant threshold. Fifty of the 98 information-rich 
CAZymes and 40 of the 59 information-rich ASVs identified as differentiating FF and DR fecal 
microbial communities in PCA space are shown in Fig. S3B,C. 
 
 
Evaluating the EMMER algorithm  
We applied EMMER to a well-characterized, previously published V4-16S rDNA amplicon 
sequencing dataset (2) to demonstrate that it is a flexible feature selection algorithm. The dataset 
describes the bacterial composition of fecal microbiota sampled from adult lean human subjects 
practicing chronic calorie restriction with adequate nutrition (CRON; n=34) and from subjects 
consuming a typical unrestricted USA diet (AMER; n=66). Using Random Forests, indicator species 
and phi-correlation analyses, Griffin et al. (2) identified 242 dietary practice (DP)-associated bacterial 
taxa (operational taxonomic units, OTUs) that differentiate AMER and CRON microbiota in Principal 
Coordinates Analysis (PCoA; unweighted UniFrac distances; Fig S4A; Dataset S6). We used this 
dataset to demonstrate the flexibility of EMMER by exploring two analytical scenarios, one in which 
the groups considered are highly distinct, and another in which they are highly similar. 
 Two sample groups with dissimilar microbiota configurations - We first tested whether the 
features selected by EMMER capture enough information from the underlying data to differentiate 
two relatively distinct groups. Feature selection was performed on the AMER and CRON datasets 
individually using EMMER to identify group-specific information-rich taxa, after which the feature 
sets were combined to create an aggregate set of 72 information-rich taxa (Dataset S6). Using PCoA, 
we visualized unweighted UniFrac distances between communities based on the representation of the 
originally described 242 DP-associated taxa (Fig. S4A; Dataset S6) or the 72 information-rich taxa 
identified by EMMER (Fig. S4B; Dataset S6). In both cases, the distribution of CRON samples is 
statistically different from AMER samples in PCoA space (P<0.005; PERMANOVA), indicating 
information-rich taxa can be used to distinguish the two sample groups. 
 Two sample groups with similar microbiota configurations - We next tested whether the 
features identified by EMMER are consistent when the underlying data come from highly similar 
groups. Therefore, data from the 34 CRON subjects were randomly allocated to one of two groups 
(n=17/subset). In total, 31 information-rich taxa were nominated by EMMER; 26 of the information-
rich taxa were shared between the two subsets. The distribution of the two CRON subsets exhibited 
no significant difference by PCoA (P>0.05; PERMANOVA; Fig. S5A; Dataset S6). To assess the 
reproducibility of this finding, we repeated the previous steps, including random sub-setting of the 
CRON dataset, EMMER analysis, and PCoA visualization, for nine additional iterations. A total of 
82% ± 9% (mean ± SD) of all information-rich taxa identified in both subsets in a given iteration were 
shared (Fig. S5B). In all cases, the difference in distributions of each pair of subsets did not achieve 
statistical significance in PCoA space (Fig. S5C). 
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Assessing the effect of litter membership on pig gut microbiota configuration 
Fig. S6 compares the pig gut microbiota in each of the two litters comprising each of the two 
treatment groups sampled at postnatal day 20 (the first sampling time point for DR and FF piglets) 
and postnatal day 154 (final time point). PCA plots generated using a dataset of 346 ASVs identified 
as having ≥0.1% relative abundance in at least 33% of fecal samples collected from pigs in a given 
treatment group at a given time point, revealed no significant effects of litter (P>0.05, 
PERMANOVA, Fig. S6; Dataset S7). We then used EMMER to select information-rich ASVs in the 
two litters comprising each treatment group at each of the two-time points sampled. PCA plots of the 
relative abundances of the ASVs present in the resulting eight lists of information-rich ASVs (Dataset 
S7) showed no significant effects of litter membership (P>0.05; PERMANOVA, Fig. S6). Finally, 
indicator species analysis (indicspecies, v1.7.9; ref. 3) failed to identify statistically significant 
indicator species that could differentiate the microbiota of members of two litters of animals 
comprising a given treatment group at a given time point. Based on these results, we concluded that 
litter membership did not significantly influence microbiota configuration in our study. 
 
EMMER versus Random Forests analysis of longitudinally sampled FF and DR pig microbiota 
Applying EMMER to the V4-16S rDNA amplicon sequencing dataset (all time points) of 564 ASVs 
identified in the fecal microbiota at ≥0.1% relative abundance and in at least 33% of samples 
collected from animals in a given treatment group at a given time point, yielded 33 information-rich 
ASVs with high reproducibility in the FF dataset and 47 in DR dataset (median reproducibility; 92.3% 
in the FF dataset, 94.1% in the DR dataset; Dataset S2). The FF and DR datasets shared 10 
information-rich ASVs. Together, these 70 information-rich ASVs represent a collection of ASVs that 
captures key characteristics of the two treatment groups at each sampling time point. Plotting the 
centroids of FF and DR microbiota at each time point on PCA revealed a temporal pattern of 
separation between the FF and DR groups that is first evident at postnatal day 49 (Fig. S2G). 
PERMANOVA indicated that DR and FF microbial community structures became significantly 
different after postnatal day 77 and that this difference was maintained through to the end of the 
experiment (Fig. S2H).  
 We then used Random Forests (RF) to compare microbiota development in the serially 
sampled FF and DR animals. To avoid potential effects from rarefication, we normalized our V4-16S 
rDNA amplicon dataset with DESeq2 (4) before applying RF (5). We trained the RF-derived model 
by using DESeq2 normalized 16S rDNA amplicon sequencing data from four of the 13 pigs in the FF 
group (R package ‘randomForest’, ntree=10,000; ref. 6), thereby obtaining a set of ‘age-
discriminatory’ ASVs. Our RF-derived model was reciprocally cross-validated by calculating the 
Pearson correlation r between predicted microbiota age (defined by the abundances of age-
discriminatory strains at a given postnatal developmental time point) and the chronological age of the 
pig. We then applied the RF-derived model to DESeq2 normalized 16S rDNA amplicon sequencing 
data from all the pigs in the DR group to describe the stage of their microbiota development compared 
to chronologically-aged matched FF pigs. We then repeated the previous steps by iterating through all 
possible combinations of 4 animals for the training set (randomly choose 4 from 13 FF animals, 
yielding 715 training datasets to produce the sparse RF-derived models). The results revealed that in 
FF animals, microbiota age was significantly positively correlated with chronological age throughout 
the first 6 months of postnatal life [Pearson’s r = 0.92 ± 0.02 (mean ± SD)]. However, in DR animals, 
microbiota age only exhibited a statistically significant positive correlation with chronological age 
prior to postnatal day 77 [Pearson’s r = 0.89 ± 0.02 (mean ± SD) compared to 0.07 ± 0.07 after 
postnatal day 77; see Fig. S7]. In summary, both EMMER and RF demonstrated that long-term diet 
restriction results in a perturbed microbiota but with RF we needed to make arbitrary decisions about 
how to subset the dataset. This was not necessary with EMMER, where we could assess the statistical 
significance of differences between FF and DR microbial community structures with PERMANOVA 
at each time point sampled (Fig. S2H).  
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SUPPLEMENTARY FIGURES 
 

 
 
Fig. S1 – b-Diversity analysis of pig fecal microbial communities. (A) 16S rDNA-based analysis of 
ASV content (B-C) Microbiome diversity measurements based on the representation of genes in 104 
mcSEED metabolic pathways (panel B) and genes encoding CAZymes (panel C). Bray-Curtis 
distances between each pair of samples within the DR group and each pair within the FF group are 
colored red and blue, respectively. Bray-Curtis distances between any possible combination of one 
DR sample and one FF sample at a given time point are shown in black. Error bars represent the 
standard deviation.    
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Fig. S2 – Identification of information-rich features in the gut microbiome/microbiota using 
EMMER. (A-D) Summary of the workflow for calculating the vNE of a non-density matrix, 
performing feature selection, evaluating the reproducibility of information-rich feature calling, and 
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optimizing the threshold for identifying information-rich feature. A table (matrix A) is constructed 
where columns are the abundances of a given feature type (CAZyme or ASV) and rows are animals in 
the same diet treatment group at a given time point. A covariance matrix (C) is then calculated. 
Eigendecomposition of matrix C yields eigenvalues that are normalized and used to calculate the vNE 
(panel A). Information-rich features are identified by systematically removing CAZymes or ASVs 
across the matrix (panel B) and verified by jackknife subsampling (panel C). The thresholds for 
selecting information-rich features are optimized by the method described in panel D. (E) Iterative 
strategy for identifying information-rich features in each treatment group. (F) In the example shown, 
dividing the postnatal day 49 microbiota dataset (n=185 ASVs) into two subsets based on diet 
treatment discloses that the optimal upper and lower thresholds are 1.5 units, yielding a total of 10 
information-rich ASVs (7 from DR, 5 from DR and 2 that are shared; Dataset S2). Using these 
thresholds, the Procrustes score s (0.004) is considerably lower than the Procrustes score w (0.692) 
(Dataset S2). (G,H) Centroids of the fecal microbiota configurations of members of each treatment 
group at each time point before and after EMMER feature selection (Dataset S2). A clear change 
occurred between postnatal day 42, the last time point sampled during consumption of the nursery 1 
diet, and postnatal day 49, the first time point sampled for the nursery 2 diet (panel G). Projecting DR 
and FF animals onto PCA space with the representation of information-rich ASVs and applying 
PERMANOVA reveals that the differences between groups were sustained beyond postnatal day 77 
(panel H), the time point when a 45% weight difference had been achieved. 
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Fig. S3 – Identification of information-rich features that differentiate the gut communities of FF 
and DR pigs in PCA space. (A) The relationship between animals and information-rich features on a 
specific principal component (PC) can be isolated from the input matrix by singular value 
decomposition (SVD). (B,C) CAZymes (panel B) and ASVs (panel C) whose representation 
differentiate DR and FF pig microbiomes/microbiota on PCA plots at different time points. P values 
were calculated using linear regression. 
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Fig. S4 – Testing EMMER using a published 16S rDNA amplicon dataset that contains fecal 
microbiota from groups of adults practicing chronic caloric restriction with adequate nutrition 
(CRON) or consuming a typical unrestricted USA diet (AMER). Principal Coordinates Analysis 
(PCoA) of unweighted UniFrac distances calculated based on the abundances of 242 DP-associated 
taxa (panel A), and 72 information-rich taxa (panel B).  
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Fig. S5 – EMMER can be applied to datasets with similar gut microbial community 
configurations. (A) PCoA of unweighted UniFrac distances between fecal microbiota samples 
calculated based on the information-rich taxa identified from two CRON 16S rDNA amplicon 
sequencing data subsets (P>0.05; PERMANOVA). (B,C) Shared information-rich bacterial taxa 
(panel B) and PERMANOVA P-values (panel C) between subsets 1 and 2, calculated from each of 
the 10 iterations of randomly split CRON 16S rDNA amplicon data. Solid horizontal lines in panel B 
and C denote the mean, while the red dashed line in panel C indicates P=0.05. Each dot represents the 
result from one iteration. 
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Fig. S6 – Assessing whether litter membership affects pig microbiota configuration. (A,B) PCA 
plots of the relative abundances of ASVs inputed into EMMER, and plots of the relative abundances 
of information-rich taxa selected by EMMER in the fecal microbiota of pigs belonging to the two 
litters comprising the DR or FF treatment groups. Results for fecal samples collected on postnatal day 
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20 are shown. (C,D) PCA plots generated using the relative abundances of ASVs in fecal samples 
collected on postnatal day 154.  
 

 
 
Fig. S7 – Using Random Forests (RF) to characterize microbiota development in DR and FF 
pigs. (A) Applying a sparse RF-derived model, trained from four FF animals, to 16S rDNA amplicon 
sequencing datasets generated from the remaining nine FF animals (top panel) and all 17 DR animals 
(lower panel). After postnatal day 77, microbiota age is no longer significantly positively correlated 
with chronological age in DR pigs. (B-D) 715 iterations through all possible combinations of ‘choose 
4 pigs from all 13 FF animals’ for the training dataset. Pearson’s r was calculated between microbiota 
age and chronological age for all time points (panel B), time points before postnatal day 77 (panel C) 
and time points after postnatal day 77 (panel D); each dot represents the result obtained from one 
iteration. Red horizontal lines in panels B-D indicate mean values. 
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SUPPLEMENTARY DATASETS 
 
Dataset S1 – Characterization and consumption of diets. (A) Composition. (B) Nutrient analysis. 
(C) Food consumption. 
 
Dataset S2 – Growth, metabolic and microbiome characteristics of DR and FF pigs. (A) Growth 
phenotypes. (B) Microbiome characteristics. (C) Metabolic characteristics. 
 
Dataset S3 – Pig fecal microbiomes used in gnotobiotic mouse experiments.  
 
Dataset S4 – Characterizing gnotobiotic mice in the ad libitum feeding experiment. (A) CAZyme 
gene content in cecal and fecal microbiomes. (B) Levels of metabolites. 
 
Dataset S5 – Characterizing gnotobiotic mice in the controlled feeding experiment. (A) Weights. 
(B) CAZyme gene content in cecal and fecal microbiomes. (C) Levels of metabolites. 
 
Dataset S6 – Applying EMMER to a published dataset. (A) Reproducibility of information-rich 
taxa calling. (B) PCoA coordinates used to generate Fig. S3A. (C) PCoA coordinates used to generate 
Fig. S3B. (D) PCoA coordinates used to generate Fig. S4A. 
 
Dataset S7 – Assessment of litter membership on pig microbiota configuration. (A) 
Reproducibility of information-rich ASV calling. (B) PCA coordinates used to generate Fig. S5. 
 
 


