39 research outputs found

    Nuclear speckles: dynamic hubs of gene expression regulation

    Get PDF
    Complex, multistep biochemical reactions that routinely take place in our cells require high concentrations of enzymes, substrates, and other structural components to proceed efficiently and typically require chemical environments that can inhibit other reactions in their immediate vicinity. Eukaryotic cells solve these problems by restricting such reactions into diffusion-restricted compartments within the cell called organelles that can be separated from their environment by a lipid membrane, or into membrane-less compartments that form through liquid–liquid phase separation (LLPS). One of the most easily noticeable and the earliest discovered organelle is the nucleus, which harbors the genetic material in cells where transcription by RNA polymerases produces most of the messenger RNAs and a plethora of noncoding RNAs, which in turn are required for translation of mRNAs in the cytoplasm. The interior of the nucleus is not a uniform soup of biomolecules and rather consists of a variety of membrane-less bodies, such as the nucleolus, nuclear speckles (NS), paraspeckles, Cajal bodies, histone locus bodies, and more. In this review, we will focus on NS with an emphasis on recent developments including our own findings about the formation of NS by two large IDR-rich proteins SON and SRRM2

    FLASH: ultra-fast protocol to identify RNA-protein interactions in cells

    No full text
    Determination of the in vivo binding sites of RNA-binding proteins (RBPs) is paramount to understanding their function and how they affect different aspects of gene regulation. With hundreds of RNA-binding proteins identified in human cells, a flexible, high-resolution, high-throughput, highly multiplexible and radioactivity-free method to determine their binding sites has not been described to date. Here we report FLASH (Fast Ligation of RNA after some sort of Affinity Purification for High-throughput Sequencing), which uses a special adapter design and an optimized protocol to determine protein-RNA interactions in living cells. The entire FLASH protocol, starting from cells on plates to a sequencing library, takes 1.5 days. We demonstrate the flexibility, speed and versatility of FLASH by using it to determine RNA targets of both tagged and endogenously expressed proteins under diverse conditions in vivo

    Rapid evolutionary turnover underlies conserved lncRNA-genome interactions

    No full text
    Many long noncoding RNAs (lncRNAs) can regulate chromatin states, but the evolutionary origin and dynamics driving lncRNA-genome interactions are unclear. We adapted an integrative strategy that identifies lncRNA orthologs in different species despite limited sequence similarity, which is applicable to mammalian and insect lncRNAs. Analysis of the roX lncRNAs, which are essential for dosage compensation of the single X chromosome in Drosophila males, revealed 47 new roX orthologs in diverse Drosophilid species across ∼40 million years of evolution. Genetic rescue by roX orthologs and engineered synthetic lncRNAs showed that altering the number of focal, repetitive RNA structures determines roX ortholog function. Genomic occupancy maps of roX RNAs in four species revealed conserved targeting of X chromosome neighborhoods but rapid turnover of individual binding sites. Many new roX-binding sites evolved from DNA encoding a pre-existing RNA splicing signal, effectively linking dosage compensation to transcribed genes. Thus, dynamic change in lncRNAs and their genomic targets underlies conserved and essential lncRNA-genome interactions

    The intrinsically disordered TSSC4 protein acts as a helicase inhibitor, placeholder and multi-interaction coordinator during snRNP assembly and recycling

    Get PDF
    Biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and their recycling after splicing require numerous assembly/recycling factors whose modes of action are often poorly understood. The intrinsically disordered TSSC4 protein has been identified as a nuclear-localized U5 snRNP and U4/U6-U5 tri-snRNP assembly/recycling factor, but how TSSC4's intrinsic disorder supports TSSC4 functions remains unknown. Using diverse interaction assays and cryogenic electron microscopy-based structural analysis, we show that TSSC4 employs four conserved, non-contiguous regions to bind the PRPF8 Jab1/MPN domain and the SNRNP200 helicase at functionally important sites. It thereby inhibits SNRNP200 helicase activity, spatially aligns the proteins, coordinates formation of a U5 sub-module and transiently blocks premature interaction of SNRNP200 with at least three other spliceosomal factors. Guided by the structure, we designed a TSSC4 variant that lacks stable binding to the PRPF8 Jab1/MPN domain or SNRNP200 in vitro. Comparative immunoprecipitation/mass spectrometry from HEK293 nuclear extract revealed distinct interaction profiles of wild type TSSC4 and the variant deficient in PRPF8/SNRNP200 binding with snRNP proteins, other spliceosomal proteins as well as snRNP assembly/recycling factors and chaperones. Our findings elucidate molecular strategies employed by an intrinsically disordered protein to promote snRNP assembly, and suggest multiple TSSC4-dependent stages during snRNP assembly/recycling

    A multi-factor trafficking site on the spliceosome remodeling enzyme BRR2 recruits C9ORF78 to regulate alternative splicing

    Get PDF
    The intrinsically unstructured C9ORF78 protein was detected in spliceosomes but its role in splicing is presently unclear. We find that C9ORF78 tightly interacts with the spliceosome remodeling factor, BRR2, in vitro. Affinity purification/mass spectrometry and RNA UV-crosslinking analyses identify additional C9ORF78 interactors in spliceosomes. Cryogenic electron microscopy structures reveal how C9ORF78 and the spliceosomal B complex protein, FBP21, wrap around the C-terminal helicase cassette of BRR2 in a mutually exclusive manner. Knock-down of C9ORF78 leads to alternative NAGNAG 3′-splice site usage and exon skipping, the latter dependent on BRR2. Inspection of spliceosome structures shows that C9ORF78 could contact several detected spliceosome interactors when bound to BRR2, including the suggested 3′-splice site regulating helicase, PRPF22. Together, our data establish C9ORF78 as a late-stage splicing regulatory protein that takes advantage of a multi-factor trafficking site on BRR2, providing one explanation for suggested roles of BRR2 during splicing catalysis and alternative splicing

    Recovering individual haplotypes and a contiguous genome assembly from pooled long-read sequencing of the diamondback moth (Lepidoptera: Plutellidae).

    Get PDF
    The assembly of divergent haplotypes using noisy long-read data presents a challenge to the reconstruction of haploid genome assemblies, due to overlapping distributions of technical sequencing error, intra-locus genetic variation and inter-locus similarity within these data. Here we present a comparative analysis of assembly algorithms representing overlap-layout-consensus, repeat graph and de Brujn graph methods. We examine how post-processing strategies attempting to reduce redundant heterozygosity interact with the choice of initial assembly algorithm and ultimately produce a series of chromosome-level assemblies for an agricultural pest, the diamondback moth, Plutella xylostella (L.). We compare evaluation methods and show that BUSCO analyses may overestimate haplotig removal processing in long-read draft genomes, in comparison to a k-mer method. We discuss the trade-offs inherent in assembly algorithm and curation choices and suggest that "best practice" is research question dependent. We demonstrate a link between allelic divergence and allele-derived contig redundancy in final genome assemblies and document the patterns of coding and non-coding diversity between redundant sequences. We also document a link between an excess of non-synonymous polymorphism and haplotigs that are unresolved by assembly or post-assembly algorithms. Finally, we discuss how this phenomenon may have relevance for the usage of noisy long-read genome assemblies in comparative genomics

    Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet

    Get PDF
    Today’s reality is connected with mitigation of threats from the new chemical and biological warfare agents. A novel investigation of cold plasmas in contact with liquids presented in this paper demonstrated that the chemically reactive environment produced by atmospheric pressure plasma jet (APPJ) is potentially capable of rapid destruction of chemical warfare agents in a broad spectrum. The decontamination of three different chemical warfare agent surrogates dissolved in liquid is investigated by using an easily transportable APPJ. The jet is powered by a kHz signal source connected to a low-voltage DC source and with He as working gas. The detailed investigation of electrical properties is performed for various plasmas at different distances from the sample. The measurements of plasma properties in situ are supported by the optical spectrometry measurements, whereas the high performance liquid chromatography measurements before and after the treatment of aqueous solutions of Malathion, Fenitrothion and Dimethyl Methylphosphonate. These solutions are used to evaluate destruction and its efficiency for specific neural agent simulants. The particular removal rates are found to be from 56% up to 96% during 10 min treatment. The data obtained provide basis to evaluate APPJ’s efficiency at different operating conditions. The presented results are promising and could be improved with different operating conditions and optimization of the decontamination process

    Advancing our understanding of functional genome organisation through studies in the fission yeast

    Get PDF
    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation

    Chromatin-associated ncRNA activities

    Get PDF
    corecore