11 research outputs found

    Some physical and mechanical properties of wood of Fast-growing tree species eucalyptus (Eucalyptus grandis) and radiata pine (Pinus radiata D.Don)

    Get PDF
    Received: February 2nd, 2021 ; Accepted: April 2nd, 2021 ; Published: April 16th, 2021 ; Correspondence: janis.iejavs@e–koks.lvFast-growing imported plantation tree species have become an available wood resource for Europe’s wood industry in the last decades. This sustainable alternative may reduce the gap between the increasing demand for and decreasing supply of the local tree species. The aim of the study was to determine and compare basic physical and mechanical properties of eucalyptus (Eucalyptus grandis) wood from Uruguay and radiata pine (Pinus radiata D.Don) wood from New Zealand as an alternative for Scots pine (Pinus sylvestris L.) from Latvia, to produce non– structural semi–finished glued laminated timber members for the manufacturing of windows. Such properties as density, swelling, bending strength, bending modulus of elasticity, compression strength and resistance to impact were determined according to ISO 13061 series standards test methods for small clear wood specimens. As the result of this study it was established that there is not significant difference between the majority of radiata pine and Scots pine properties, with the exception of resistance to impact and radial swelling where radiata pine shows significantly higher values. Not surprisingly all the properties of deciduous eucalyptus wood were significantly higher compared to both coniferous tree species. Higher swelling and density properties of eucalyptus compared to radiata pine and Scots pine should be taken into consideration for the design and production of wooden window elements

    Swelling pressure and form stability of cellular wood material

    Get PDF
    ArticleCellular Wood Material (hereinafter CWM) middle layer of the Dendrolight® has been developed in the beginning of this century as a wood material for minimization of internal stresses, because of the material structure and reduced swelling and shrinking impact to products in end use application. Some research has been conducted on the physical mechanical and physical chemical properties of CWM, while dimensional stability has not been well researched. The goal of this research is to perform an assessment of the CWM shrinkage and swelling impact on dimensional characteristics of the CWM multilayer composite materials. CWM swelling pressure in length, width, and height of the material were determined and compared to the relevant indicators of pine solid wood. The form stability or the impact of combination of the CWM with some facing materials wood particle board, medium density fibre board (hereinafter MDF), oriented strand board (hereinafter OSB), pine solid wood, gypsum plaster board used in wood products was investigated. The hypothesis that swelling pressure of CWM must be lower than that of pine solid wood was proved, it is 2.3 times lower in the radial direction and 3.9 times lower in tangential direction compared to pine solid wood. The CWM samples, manufactured for determining the form stability in wetting conditions deflected in the height direction by 4%, thus creating deflections also in the seams between separate lamellas of the CWM. Swelling pressure of the CWM is several times smaller than that of solid wood and can be further limited by creating complex wood and non-wood composite material panels using gluing technique

    Bonding performance of wood of fast-growing tree species eucalyptus (Eucalyptus grandis) and radiata pine (Pinus radiata D.Don) with polyvinyl acetate and emulsion polymer isocyanate adhesives

    Get PDF
    Received: July 11th, 2021 ; Accepted: December 5th, 2021 ; Published: January 25th, 2022 ; Correspondence: janis.iejavs@e–koks.lvFast-growing imported plantation tree species have become an available wood resource for Europe’s wood industry in the last decades. This sustainable alternative may reduce the gap between the increasing demand for and decreasing supply of the local tree species. The aim of the study was to evaluate the performance of eucalyptus (Eucalyptus grandis) and radiata pine (Pinus radiata D.Don) wood in face-bonding with polyvinyl acetate (PVAc) and emulsion polymer isocyanate (EPI) adhesive for the production of non-structural semi-finished glued laminated timber members for window manufacturing. Test specimen preparation and testing were performed according to European standards. Tensile shear strength and wood failure percentages were determined as bonding performance indicators for 3 adhesives and 3 selected bonding parameters (pressure, pressing time and adhesive spread) in 27 variations after boiling the specimens in water. According to the results, the bonding variables influence the glue-line tensile shear strength and wood failure percentages. Bonding pressure and pressing time were evaluated as the most significant factors influencing shear strength of bonded joints. For all bonding variations the average level of shear strength from 3.45 to 5.23 MPa were reached for PVAc adhesive and from 3.78 to 9.65 MPa for EPI adhesives. Both EPI adhesives provide higher performance compared to PVAc adhesive. In the case of bonding fast-growing tree species, the highest shear strength values were achieved using the lowest pressure of 0.8 MPa, adhesive spread from 150 to 180 g m-2 and longest pressing time of 40 min. Based on the general evaluation of the results, it can be stated that the wood of eucalyptus and radiata pine bonded with both EPI adhesives presents great potential for non-structural semi-finished glued laminated timber member production, especially for the use in humid conditions

    Effect of environmental temperature on bending strength of the finger jointed aspen lumber

    Get PDF
    ArticleGlued sauna wall boards are used as non-load-bearing structures. These products are subject to aggressive microclimate impact and very often for the gluing in length and width thermoplastic polyvinyl acetate adhesives (PVAC) are used. In the performed research sauna wall boards made of common aspen (Populus tremula L.) with mean wood moisture content 8% were used. For the gluing in length with finger joint PVAC glue of D4 (LVS EN 204) group was used. The aim of the research is identifying the impact of the environmental temperature on the strength of finger jointed aspen timber in 4 point static bending (in compliance with standard LVS EN 408). As a result of the study it was established, that after holding the finger jointed testing pieces visible in flat wise for 3 hours at the temperature of 100°C , the mean bending strength decreased by 56% or 31.7 MPa in comparison to that held in the standard atmosphere. In case of the aspen timber with finger joints visible in edge wise held for 3 hours at the temperature of 100°C , the bending strength decreased by 60% or 29.3 MPa in comparison to the testing pieces of the same type held in the standard atmosphere

    Bending properties of mechanically jointed solid timber beams

    No full text

    Wytrzymałość na ściskanie trójwarstwowych płyt komórkowych

    No full text
    The invention of a lightweight panel with the trade mark Dendrolight is one of the most distinguished wood industry innovations in the last decade. At present, three-layer cellular wood panels have wide non-structural application. The aim of the research was to evaluate the compression properties of three-layer cellular wood panels for structural application. 8 specimens were manufactured for both perpendicular and parallel compression tests for each of 6 structural panel models. Scots pine cellular wood and solid pine wood ribs were used as the core layer of the structural panels. The cellular wood core was placed in a horizontal or vertical direction. Solid Scots pine wood panels and birch plywood as top layer material were used. The common stress type in subfloor and wall panels is compression, therefore the influences of the cellular material orientation, ribs and top layer material on the sandwich-type structural panel compression strength were evaluated according to LVS EN 408. 15 [LVS EN 408]. Extra parameters, such as the moisture content and apparent density, were determined. Different structural models have a great effect on the compression strength of cellular wood material panels. The highest compression strength in a parallel direction, 17.5 MPa, was achieved with a structural model with cellular material placed vertically, with the ribs and top layers of solid timber, but in a perpendicular direction, 4.48 MPa was achieved with a structural model with cellular material placed vertically and the top layers of plywood. Solid wood ribs significantly influence the compression strength when the panels are loaded in a parallel direction.Wynalezienie płyty lekkiej oznaczonej znakiem towarowym Dendrolight stanowi jedną z najznakomitszych innowacji w przemyśle drzewnym w ostatniej dekadzie. Obecnie trójwarstwowe płyty komórkowe są szeroko rozpowszechnione w zastosowaniach niekonstrukcyjnych, tj. meblach, okładzinach wewnętrznych, produkcji drzwi oraz w przemyśle transportowym. Celem badań była ocena właściwości trójwarstwowych płyt komórkowych w zakresie ich wytrzymałości na ściskanie pod kątem zastosowań konstrukcyjnych. Dla każdego z sześciu modeli płyty konstrukcyjnej wytworzono osiem próbek do wykorzystania w badaniach wytrzymałości na ściskanie prostopadłe do kierunku włókien i ściskanie wzdłuż włókien. Jako rdzenia w płytach konstrukcyjnych użyto drewna komórkowego z sosny zwyczajnej oraz żeber z litego drewna sosnowego. Rdzeń z drewna komórkowego umieszczono w kierunku poziomym lub pionowym. Płyty z litego drewna sosny zwyczajnej oraz sklejka brzozowa zostały wykorzystane jako materiał na górną warstwę. Głównym rodzajem naprężenia występującym w warstwie podpodłogowej oraz w płytach ściennych jest ściskanie, zatem wpływ ukierunkowania materiału komórkowego, żeber i materiału z górnej warstwy na wytrzymałość na ściskanie płyt konstrukcyjnych różnowarstwowych został oceniony zgodnie z normą LVS EN 408 [2010]. Określono dodatkowe parametry, takie jak wilgotność i gęstość pozorną. Różne modele konstrukcyjne wywierają znaczny wpływ na wytrzymałość na ściskanie płyty z komórkowego materiału drzewnego. Najwyższą wytrzymałość na ściskanie w kierunku wzdłuż włókien, tj. 17,5 MPa, otrzymano w przypadku modelu konstrukcyjnego z umieszczonym pionowo materiałem komórkowym oraz z żebrami i górnymi warstwami wykonanymi z litego drewna, jednakże, w przypadku wytrzymałości na ściskanie w kierunku prostopadłym do włókiem, najlepszy wynik, tj. 4,48 MPa, uzyskano dla modelu strukturalnego, w którym materiał komórkowy umieszczono pionowo, a górne warstwy wykonano ze sklejki. Żebra z litego drewna wywierają znaczący wpływ na wytrzymałość na ściskanie, kiedy płyty są obciążane w kierunku wzdłuż włókien

    Cellular wood material properties - review

    No full text

    Porównanie właściwości trzywarstwowego materiału komórkowego oraz płyt drewnopochodnych

    No full text
    In recent years a reduced weight cell panel, whose trade mark is Dendrolight, has gained worldwide recognition thanks to the opening of an experimental factory in Austria and the start-up of a new industrial factory in Latvia with manufacturing capacity of 65 thousand m3 cell board material per year. Hitherto the internal layer of cell panel of cellular wood material type has been produced mainly from softwoods like Norway spruce (Picea abies L.) or Scots pine (Pinus sylvestris L.) covered with plywood, solid wood, particleboard or other material. The reduced weight cell panel has many applications in the furniture industry, internal cladding, door production, the transport manufacturing industry, and possibly in the construction panel production. The essential goal of the research was to identify possible applications of aspen (Populus tremula L.) wood, which is a common broad-leaved tree in Latvia, as an alternative material to Norway spruce in the production of reduced weight cell panel. The aim of the initial research was to investigate some physical and mechanical properties of aspen cell panel covered with aspen and plywood as well as to compare these physical and mechanical properties with the properties of wood-based panels. The following raw materials were used: finger jointed aspen for internal layer; finger jointed aspen and three-layer birch plywood for external layer; polyurethane and polyvinylacetate adhesives for internal and external layer gluing. Tests of obtained aspen panel were carried out in accordance with current test standards for testing of panel and timber properties. The following panel parameters were determined: moisture content, density, swelling in thickness after 24-hour immersion in water, tensile strength, three-point bending strength and modulus of elasticity, and four-point bending strength. A relevant conclusion: panels of cellular wood material type produced from aspen wood have similar physical and mechanical properties to such cell panels produced from spruce wood.Płyty komórkowe o obniżonej gęstości mają szerokie zastosowanie w przemyśle meblarskim, wyposażeniu wnętrz, produkcji drzwi, środkach transportu. Mogą być również stosowane w wytwarzaniu płyt konstrukcyjnych. Założeniem badań było określenie przydatności drewna topoli (Populus tremula), rozpowszechnionego na Łotwie, jako substytutu drewna świerku, w produkcji płyt o obniżonej gęstości. W badaniach wykorzystano: drewno topoli na warstwę środkową, trzywarstwową sklejkę brzozową na warstwy zewnętrzne oraz kleje poliuretanowe i polioctanowinylowe. Zbadano następujące parametry wytworzonych płyt: gęstość, wilgotność, spęcznienie, wytrzymałość na rozciąganie, wytrzymałość na zginanie i moduł sprężystości. W podsumowaniu stwierdzono, iż płyty komórkowe wytworzone z drewna topoli charakteryzują się podobnymi właściwościami fizycznymi i mechanicznymi jak płyty komórkowe wytworzone z drewna świerku

    Reaction of door constructions made of cellular wood material to fire

    No full text

    Flexural behavior of sandwich panels with cellular wood, plywood stiffener/foam and thermoplastic composite core

    No full text
    A series of experimental tests have been carried out on three types of novel sandwich panels mainly designed for application in lightweight mobile housing. Two types of the panels are manufactured entirely from wood-based materials while the third one presents a combination of plywood for surfaces and corrugated thermoplastic composite as a core part. All sandwich panels are designed to allow rapid one-shot manufacturing. Mechanical performance has been evaluated in four-point bending comparing the data to the reference plywood board. Additionally, finite element simulations were performed to evaluate global behavior, stress distribution and provide the basis for a reliable design tool. Obtained results show sufficient mechanical characteristics suitable for floor and wall units. Compared to a solid plywood board, sandwich alternative can reach up to 42% higher specific stiffness, at the same time maintaining sufficient strength characteristics
    corecore