9 research outputs found
Recovery of the X-ray polarisation of Swift J1727.8-1613 after the soft-to-hard spectral transition
\ua9 The Authors 2024.We report on the detection of X-ray polarisation in the black-hole X-ray binary Swift J1727.8-1613 during its dim hard spectral state by the Imaging X-ray Polarimetry Explorer (IXPE). This is the first detection of X-ray polarisation at the transition from the soft to the hard state in an X-ray binary. We find an averaged 2- 8 keV polarisation degree of (3.3 \ub1 0.4)% and a corresponding polarisation angle of 3 \ub14, which matches the polarisation detected during the rising stage of the outburst, in September- October 2023, within 1Ïuncertainty. The observational campaign complements previous studies of this source and enables comparison of the X-ray polarisation properties of a single transient across the X-ray hardness-intensity diagram. The complete recovery of the X-ray polarisation properties, including the energy dependence, came after a dramatic drop in the X-ray polarisation during the soft state. The new IXPE observations in the dim hard state at the reverse transition indicate that the accretion properties, including the geometry of the corona, appear to be strikingly similar to the bright hard state during the outburst rise despite the X-ray luminosities differing by two orders of magnitude
Accreting Millisecond X-Ray Pulsars
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories
without parallel in the study of extreme physics. In this chapter we review the
past fifteen years of discoveries in the field. We summarize the observations
of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength
observations that have been carried out since the discovery of the first AMXP
in 1998. We review accretion torque theory, the pulse formation process, and
how AMXP observations have changed our view on the interaction of plasma and
magnetic fields in strong gravity. We also explain how the AMXPs have deepened
our understanding of the thermonuclear burst process, in particular the
phenomenon of burst oscillations. We conclude with a discussion of the open
problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations
and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer;
[revision with literature updated, several typos removed, 1 new AMXP added
Discovery of X-Ray Polarization from the Black Hole Transient Swift J1727.8â1613
We report the first detection of the X-ray polarization of the bright transient Swift J1727.8â1613 with the Imaging X-ray Polarimetry Explorer. The observation was performed at the beginning of the 2023 discovery outburst, when the source resided in the bright hard state. We find a time- and energy-averaged polarization degree of 4.1% ± 0.2% and a polarization angle of 2.°2 ± 1.°3 (errors at 68% confidence level; this translates to âŒ20Ï significance of the polarization detection). This finding suggests that the hot corona emitting the bulk of the detected X-rays is elongated, rather than spherical. The X-ray polarization angle is consistent with that found in submillimeter wavelengths. Since the submillimeter polarization was found to be aligned with the jet direction in other X-ray binaries, this indicates that the corona is elongated orthogonal to the jet
Discovery of X-Ray Polarization from the Black Hole Transient Swift J1727.8â1613
\ua9 2023. The Author(s). Published by the American Astronomical Society.We report the first detection of the X-ray polarization of the bright transient Swift J1727.8â1613 with the Imaging X-ray Polarimetry Explorer. The observation was performed at the beginning of the 2023 discovery outburst, when the source resided in the bright hard state. We find a time- and energy-averaged polarization degree of 4.1% \ub1 0.2% and a polarization angle of 2.\ub02 \ub1 1.\ub03 (errors at 68% confidence level; this translates to âŒ20Ï significance of the polarization detection). This finding suggests that the hot corona emitting the bulk of the detected X-rays is elongated, rather than spherical. The X-ray polarization angle is consistent with that found in submillimeter wavelengths. Since the submillimeter polarization was found to be aligned with the jet direction in other X-ray binaries, this indicates that the corona is elongated orthogonal to the jet
Tracking the X-Ray Polarization of the Black Hole Transient Swift J1727.8-1613 during a State Transition
\ua9 2024. The Author(s). Published by the American Astronomical Society.We report on an observational campaign on the bright black hole (BH) X-ray binary Swift J1727.8-1613 centered around five observations by the Imaging X-ray Polarimetry Explorer. These observations track for the first time the evolution of the X-ray polarization of a BH X-ray binary across a hard to soft state transition. The 2-8 keV polarization degree decreased from âŒ4% to âŒ3% across the five observations, but the polarization angle remained oriented in the north-south direction throughout. Based on observations with the Australia Telescope Compact Array, we find that the intrinsic 7.25 GHz radio polarization aligns with the X-ray polarization. Assuming the radio polarization aligns with the jet direction (which can be tested in the future with higher-spatial-resolution images of the jet), our results imply that the X-ray corona is extended in the disk plane, rather than along the jet axis, for the entire hard intermediate state. This in turn implies that the long (âł10 ms) soft lags that we measure with the Neutron star Interior Composition ExploreR are dominated by processes other than pure light-crossing delays. Moreover, we find that the evolution of the soft lag amplitude with spectral state does not follow the trend seen for other sources, implying that Swift J1727.8-1613 is a member of a hitherto undersampled subpopulation
Searching for pulsed emission from XTE J0929-314 at high radio frequencies
Aims. The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. Methods. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-314 in three steps, correcting for the effect of the dispersion due to the interstellar medium, eliminating the orbital motions effects, and finally folding the time series. Results. No radio pulsation is present in the analyzed data down to a limit of 68 mu Jy at 6.4 GHz and 26 mu Jy at 8.5 GHz. Conclusions. We discuss several mechanisms that could prevent the detection, concluding that beaming factor and intrinsic low luminosity are the most likely explanations
Accreting Pulsars: Mixing-up Accretion Phases in Transitional Systems
In the last 20 years our understanding of the millisecond pulsar (MSP)
population changed dramatically. Thanks to RXTE, we discovered that neutron
stars in LMXBs spins at 200-750 Hz frequencies, and indirectly confirmed the
recycling scenario, according to which neutron stars are spun up to ms periods
during the LMXB-phase. In the meantime, the continuous discovery of
rotation-powered MSPs in binary systems in the radio and gamma-ray band (mainly
with the Fermi LAT) allowed us to classify these sources into two "spiders"
populations, depending on the mass of their companion stars: Black Widow, with
very low-mass companion stars, and Redbacks, with larger companions possibly
filling their Roche lobes but without accretion. It was soon regained that MSPs
in short orbital period LMXBs are the progenitors of the spider populations of
rotation-powered MSPs, although a direct link between accretion- and
rotation-powered MSPs was still missing. In 2013 XMM-Newton spotted the X-ray
outburst of a new accreting MSP (IGR J18245-2452) in a source that was
previously classified as a radio MSP. Follow up observations of the source when
it went back to X-ray quiescence showed that it was able to swing between
accretion- to rotation-powered pulsations in a relatively short timescale (few
days), promoting this source as the direct link between the LMXB and the radio
MSP phases. Following discoveries showed that there exists a bunch of sources,
which alternates X-ray activity phases, showing X-ray pulsations, to radio-loud
phases, showing radio pulsations, establishing a new class of MSPs: the
Transitional MSP. In this review we describe these exciting discoveries and the
properties of accreting and transitional MSPs, highlighting what we know and
what we have still to learn about in order to fully understand the (sometime
puzzling) behavior of these systems and their evolutive connection (abridged)
Solar observations with single-dish INAF radio telescopes: Continuum imaging in the 18âââ26 GHz range
This is the final version. Available from Springer via the DOI in this record.âŻThis research used version 3.1.3 (The SunPy Community et al., 2020) of the SunPy open-source software package (Mumford et al., 2020).We present a new solar radio imaging system implemented through the upgrade of the large single-dish telescopes of the Italian National Institute for Astrophysics (INAF), not originally conceived for solar observations. During the development and early science phase of the project (2018âââ2020), we obtained about 170 maps of the entire solar disk in the 18âââ26 GHz band, filling the observational gap in the field of solar imaging at these frequencies. These solar images have typical resolutions in the 0.7âââ2 arcmin range and a brightness temperature sensitivity <10 K. Accurate calibration adopting the Supernova Remnant Cas A as a flux reference provided typical errors <3% for the estimation of the quiet-Sun level components and active regions flux measurements. As the first early scientific result of the project, we present a catalog of radio continuum solar imaging observations with Medicina 32-m and SRT 64-m radio telescopes, including the multi-wavelength identification of active regions, their brightness and spectral characterization. The interpretation of the observed emission as thermal bremsstrahlung components combined with gyro-magnetic variable emission paves the way for the use of our system for long-term monitoring of the Sun. We also discuss useful outcomes both for solar physics (e.g., study of the chromospheric network dynamics) and space weather applications (e.g., flare precursors studies).Italian Space Agency for ASI/Cagliari UniversityItalian Space Agency for ASI/Cagliari UniversityIstituto Nazionale di Astrofisic