201 research outputs found

    Substrate quality and the temperature sensitivity of soil organic matter decomposition

    Get PDF
    Copyright © 2008 Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Soil Biology and Biochemistry, 2008, Vol. 40, Issue 7, pp. 1567 – 1574 http://dx.doi.org/10.1016/j.soilbio.2008.01.007Determining the relative temperature sensitivities of the decomposition of the different soil organic matter (SOM) pools is critical for predicting the long-term impacts of climate change on soil carbon (C) storage. Although kinetic theory suggests that the temperature sensitivity of SOM decomposition should increase with substrate recalcitrance, there remains little empirical evidence to support this hypothesis. In the study presented here, sub-samples from a single bulk soil sample were frozen and sequentially defrosted to produce samples of the same soil that had been incubated for different lengths of time, up to a maximum of 124 days. These samples were then placed into an incubation system which allowed CO2 production to be monitored constantly and the response of soil respiration to short-term temperature manipulations to be investigated. The temperature sensitivity of soil CO2 production increased significantly with incubation time suggesting that, as the most labile SOM pool was depleted the temperature sensitivity of SOM decomposition increased. This study is therefore one of the first to provide empirical support for kinetic theory. Further, using a modelling approach, we demonstrate that it is the temperature sensitivity of the decomposition of the more recalcitrant SOM pools that will determine long-term soil-C losses. Therefore, the magnitude of the positive feedback to global warming may have been underestimated in previous modelling studies

    The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils

    Get PDF
    Copyright © 2010 Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Soil Biology and Biochemistry, 2010, Vol. 42, Issue 1, pp. 92 – 100, http://dx.doi.org/10.1016/j.soilbio.2009.10.004Global warming in the Arctic may alter decomposition rates in Arctic soils and therefore nutrient availability. In addition, changes in the length of the growing season may increase plant productivity and the rate of labile C input below ground. We carried out an experiment in which inorganic nutrients (NH4NO3 and NaPO4) and organic substrates (glucose and glycine) were added to soils sampled from across the mountain birch forest-tundra heath ecotone in northern Sweden (organic and mineral soils from the forest, and organic soil only from the heath). Carbon dioxide production was then monitored continuously over the following 19 days. Neither inorganic N nor P additions substantially affected soil respiration rates when added separately. However, combined N and P additions stimulated microbial activity, with the response being greatest in the birch forest mineral soil (57% increase in CO2 production compared with 26% in the heath soil and 8% in the birch forest organic soil). Therefore, mineralisation rates in these soils may be stimulated if the overall nutrient availability to microbes increases in response to global change, but N deposition alone is unlikely to enhance decomposition. Adding either, or both, glucose and glycine increased microbial respiration. Isotopic separation indicated that the mineralisation of native soil organic matter (SOM) was stimulated by glucose addition in the heath soil and the forest mineral soil, but not in the forest organic soil. These positive ‘priming’ effects were lost following N addition in forest mineral soil, and following both N and P additions in the heath soil. In order to meet enhanced microbial nutrient demand, increased inputs of labile C from plants could stimulate the mineralisation of SOM, with the soil C stocks in the tundra-heath potentially most vulnerable

    The age of CO2 released from soils in contrasting ecosystems during the arctic winter

    Get PDF
    Copyright © 2013 Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Soil Biology and Biochemistry, Vol. 63, pp. 1 – 4 DOI: http://dx.doi.org/10.1016/j.soilbio.2013.03.011In arctic ecosystems, winter soil respiration can contribute substantially to annual CO2 release, yet the source of this C is not clear. We analysed the 14C content of C released from plant-free plots in mountain birch forest and tundra-heath. Winter-respired CO2 was found to be a similar age (tundra) or older (forest) than C released during the previous autumn. Overall, our study demonstrates that the decomposition of older C can continue during the winter, in these two contrasting arctic ecosystems

    Temperature effects on carbon storage are controlled by soil stabilisation capacities

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: All data used in this manuscript are fully open access and available. The soil data were obtained from a published snapshot derived from the World Soil Information database (https://doi.org/10.17027/isric-wdcsoils.20160003), the long-term climate data are available in the WorldClim version 2.0 database (http://worldclim.org), while the MODIS primary productivity, evapotranspiration, and landcover data are available in the MOD17A3 (https://doi.org/10.5067/MODIS/MOD17A3.006), MOD16A2 (https://doi.org/10.5067/MODIS/MOD16A2.006) and MCD12Q1 (https://doi.org/10.5067/MODIS/MCD12Q1.006) databases respectively. The UKESM data from the sixth coupled model intercomparison project (CMIP6) is available in the public data archive (https://data.ceda.ac.uk/badc/cmip6/data/CMIP6/CMIP/MOHC/UKESM1-0-LL).Physical and chemical stabilisation mechanisms are now known to play a critical role in controlling carbon (C) storage in mineral soils, leading to suggestions that climate warming-induced C losses may be lower than previously predicted. By analysing > 9,000 soil profiles, here we show that, overall, C storage declines strongly with mean annual temperature. However, the reduction in C storage with temperature was more than three times greater in coarse-textured soils, with limited capacities for stabilising organic matter, than in fine-textured soils with greater stabilisation capacities. This pattern was observed independently in cool and warm regions, and after accounting for potentially confounding factors (plant productivity, precipitation, aridity, cation exchange capacity, and pH). The results could not, however, be represented by an established Earth system model (ESM). We conclude that warming will promote substantial soil C losses, but ESMs may not be predicting these losses accurately or which stocks are most vulnerable.Natural Environment Research Council (NERC)Swedish Research CouncilEuropean Union Horizon 202

    Evaluation of commercial RNA extraction kits for long-read metatranscriptomics in soil

    Get PDF
    This is the final version. Available on open access from the Microbiology Society via the DOI in this recordData Summary: The datasets generated during the current study are available in the NCBI Sequence Read Archive repository, PRJNA1079547Metatranscriptomic analysis of the soil microbiome has the potential to reveal molecular mechanisms that drive soil processes regulated by the microbial community. Therefore, RNA samples must be of sufficient yield and quality to robustly quantify differential gene expression. While short-read sequencing technology is often favoured for metatranscriptomics, long-read sequencing has the potential to provide several benefits over short-read technologies. The ability to resolve complete transcripts on a portable sequencing platform for a relatively low capital expenditure makes Oxford Nanopore Technology an attractive prospect for addressing many of the challenges of soil metatranscriptomics. To fully enable long-read metatranscriptomic analysis of the functional molecular pathways expressed in these diverse habitats, RNA purification methods from soil must be optimised for long-read sequencing. Here we compare RNA samples purified using five commercially available extraction kits designed for use with soil. We found that the Qiagen RNeasy PowerSoil Total RNA Kit performed the best across RNA yield, quality and purity and was robust across different soil types. We found that sufficient sequencing depth can be achieved to characterise the active community for total RNA samples using Oxford Nanopore Technology, and discuss its current limitations for differential gene expression analysis in soil studies.Shell Research Ltd

    A positive feedback to climate change: The effect of temperature on the respiration of key wood-decomposing fungi does not decline with time

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are openly available in Dryad at 10.5061/dryad.t1g1jwt7fHeterotrophic soil microorganisms are responsible for ~50% of the carbon dioxide released by respiration from the terrestrial biosphere each year. The respiratory response of soil microbial communities to warming, and the control mechanisms, remains uncertain, yet is critical to understanding the future land carbon (C)-climate feedback. Individuals of nine species of fungi decomposing wood were exposed to 90 days of cooling to evaluate the medium-term effect of temperature on respiration. Overall, the effect of temperature on respiration increased in the medium term, with no evidence of compensation. However, the increasing effect of temperature on respiration was lost after correcting for changes in biomass. These results indicate that C loss through respiration of wood-decomposing fungi will increase beyond the direct effects of temperature on respiration, potentially promoting greater C losses from terrestrial ecosystems and a positive feedback to climate change.Natural Environment Research Council (NERC

    Drain blocking has limited short-term effects on greenhouse gas fluxes in a Molinia caerulea dominated shallow peatland (article)

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThe dataset associated with this article is available in ORE at https://doi.org/10.24378/exe.2723Drained peatlands dominated by purple moor grass (Molinia caerulea) are widespread in the UK and Western Europe. Although substantial carbon stores may be present in these peatlands, in this degraded state they are not currently acting as carbon sinks. Therefore, M.caerulea dominated peatlands have been identified as potential sites for ecohydrological restoration to tackle the current climate emergency. However, at present little is known about whether ditch blocking can raise water tables and promote the recovery of bog plant species, and the subsequent effects on carbon sequestration in these peatlands. To investigate the potential for restoration, we measured changes in water table depth, vegetation composition, photosynthesis at 1000 μmol Photons m−2 s−1 (PG1000), ecosystem respiration (REco) and partitioned below-ground respiration in two M.caerulea dominated peatlands in which drainage ditches had been blocked located in Exmoor National Park, southwest England. Measurements were made in two headwater catchments at ⅛, ¼ and ½ of the distance between adjacent drainage ditches at four control-restored paired sites, during the growing seasons pre- (2012) and post- (2014, 2016 & 2018) restoration. Restoration had a small but significant (p = 0.009) effect on water table depths however, this did not result in a significant change in vegetation composition (p > 0.350). Ecosystem respiration increased in both the control and restored locations following restoration however, this increase was significantly smaller (p = 0.010) at the restored locations, possibly due to a similarly reduced increase in photosynthesis, although this change was not significant (p = 0.116). Below-ground respiration showed no significant changes following restoration. This research illustrates how degraded these shallow peatlands are, and raises concerns that ditch blocking alone may not bring about the high and stable water tables required to perturb the existing Molinia caerulea-dominated ecosystem and substantially alter the carbon balance. Additional restoration measures may be required.South West Water (SWW)University of ExeterTechnology Strategy Board CouncilNatural Environment Research Council (NERC

    How woody plants adjust above- and below-ground traits in response to sustained drought

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordFuture increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival.Natural Environment Research Council (NERC)MINECOEuropean Union Horizon 202

    Trees out‐forage understorey shrubs for nitrogen patches in a subarctic mountain birch forest

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this record. Data availability statement: Data are available from the Dryad Digital Repository: https:// doi.org/10.5061/dryad.j0zpc86j6 (Friggens et al. 2022).Nitrogen (N), acquired by roots and mycorrhizal fungi and supplied to plant foliage, is a growth-limiting nutrient at the subarctic treeline. Due to this limitation, interspecific competition and acquisition of N is an important control on plant community composition and distribution. The ability of trees and shrubs to access N shapes community dynamics at this ecotone undergoing species range shifts and changes in primary productivity driven by climate change. Using 15N soil labelling we investigate the fate of soil inorganic N, and spatial distances over which trees and understorey shrubs access soil N, in a treeline forest. 15N was injected into soil rooting zones in discrete 1 m2 patches and foliar samples were collected from trees between 1 and 50 m away, and understorey shrubs between 0.5 and 11 m away from labelled soil. The 15N label was found in mountain birch trees up to 5 m, and in understorey shrubs up to 2 m, away from labelled soil. We estimate that 1.27% of pulse-derived N was found in foliage of birch trees, compared to 1.16% in the understorey. However, mountain birch trees contributed only 31% of ecosystem leaf area index (LAI), thus there was a disproportionate allocation of added label to the birch canopy compared with its contribution to ecosystem LAI. The difference in root and mycorrhizal exploration distances and community N partitioning between mountain birch trees and understorey shrubs may confer competitive advantage to trees with respect to nitrogen and nutrient patches, which may alter plant community structures within these forests. This is particularly important considering predicted climate-driven tree and tall shrub expansion in subarctic regions, with likely consequences for ecosystem N and carbon (C) cycling, as well as for community composition and biodiversity.European Union Horizon 2020Natural Environment Research Council (NERC

    Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil.

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.  Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N-limited temperate forests. In N-rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old-growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low-N), 100 (Medium-N), and 150 (High-N) kg N ha-1 yr-1 . Soil organic carbon (SOC) content increased under High-N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2 O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High-N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2 O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes and biodiversity of tropical ecosystems. This article is protected by copyright. All rights reserved.National Natural Science Foundation of ChinaNational Key R&D Program of ChinaYouth Innovation Research Team Projec
    corecore