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Summary

Future increases in drought severity and frequency are predicted to have substantial impacts on

plant function and survival. However, there is considerable uncertainty concerning what

drought adjustment is and whether plants can adjust to sustained drought. This review focuses

on woody plants and synthesises the evidence for drought adjustment in a selection of key

above-ground and below-ground plant traits. We assess whether evaluating the drought

adjustment of single traits, or selections of traits that operate on the same plant functional axis

(e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across

multiple axes, is required. We conclude that studies on drought adjustments in woody plants

might overestimate the capacity for adjustment to drier environments if spatial studies along

gradients are used, without complementary experimental approaches. We provide evidence

that drought adjustment is common in above-ground and below-ground traits; however,

whether this is adaptive and sufficient to respond to future droughts remains uncertain for most

species. To address this uncertainty,wemustmove towards studying trait integrationwithin and

across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic

view of drought adjustments at the whole-plant scale and how these influence plant survival.

I. Defining and measuring plant adjustment to
drought

There is a growing body of literature within the field of plant
ecology concerning the capacity of plants to adjust their traits in
response to drought. This, in part, may be related to the recent
sustained and extreme drought events that have occurred globally,
for example in 2010 and 2015 across Amazonia, in 2017 across the
Mediterranean and in 2018/9 across Europe. For this review, we
define sustained drought as a period where a plant experiences

abnormally low soil moisture availability driven by either low
rainfall or excessive atmospheric water demand over periods of
months to years.

Howdrought adjustment is defined varies substantially. Froman
evolutionary perspective, it can include adaptation (Gould &
Lewontin, 1979), defined as phenotypic changes at a population
level caused by heritable changes in the genome across generations.
In addition, adjustment can include changes in phenotype in
response to environmental cues, without a change in the genetic
sequence (Box 1). Adjustments to drought that do not involve
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changes in genetic sequence can be termed plasticity (Box 1).
Separating out genetic andplastic drivers of adjustment is, however,
not simple. Plasticity to drought could shield a plant from selective
pressures, limiting adaptive evolution (Ghalambor et al., 2007).
Moreover, epigenetic modifications can make distinguishing
plastic and heritable genetic changes more complex, because they
can also be transmitted from parents to offspring, but do not
involve changes to theDNA sequence. Rather, most commonly for
plants, they reflect changes in DNAmethylation, which alters gene
expression (Erdmann & Picard, 2020). The boundaries and links
between genetic and plastic processes of plant adjustment to
drought warrant substantially more consideration. Consequently,
to avoid confusion, in this review, we investigate types of
adjustment that exclude changes in the genome sequence and
focus on plastic adjustments that can occur within the lifetimes of
long-lived woody plants, except where sparse evidence forces us to
include model organisms. We start by defining what we mean by
the key terms we use throughout this text to describe drought
adjustment and focus on understanding the assumptions associated
withwhat each term is used to describe. This standardisation is vital
to being able to make meaningful comparisons across studies
and, ultimately, to determine robustly how likely plants are to use
short-term, nonevolutionary changes to their phenotype to limit
the impact of sustained drought stress.

Plasticity can generate both reversible and irreversible responses
within plants. Reversible responses are generally associated with
changes in plant functional traits in response to either a change in
single environmental variable (Acclimation, Box 1) or multiple
environmental variables changing together (Acclimatisation,
Box 1). Acclimation can generally only be robustly detected
under highly controlled laboratory conditions, whereas acclima-
tisation can be measured in field conditions (Box 1). By contrast,
developmental plasticity can involve both reversible adjustments
(acclimation or acclimatisation), but is more often associated with
irreversible changes to plant structure (Box 1). In terms of
drought, these irreversible adjustments may involve plants being
exposed to drought during the early stages of development and
altering the way they grow in ways that persist to impact the form
and function of the mature organism, for example water-limited
growth generating a shorter statured plant. Quite often, there is
the erroneous assumption that all forms of plasticity, be it
reversible or irreversible, are adaptive; however, they can have a
range of positive and negative impacts on the plants (Ghalambor
et al., 2007).

Plasticity has been described as ‘adaptive’ when it increases
fitness, ‘nonadaptive’, when there is no impact on fitness, or
‘maladaptive’ when there is a negative impact on fitness (Box 1).
These three types of plasticity can arise from active processes,
involving a response mechanism activated by the plant, or passive
processes, involving responses from the plant related to resource
shortages (Box 1). Separating out active and passive processes in
response to drought is notoriously difficult (Brooker et al., 2022).
For many physiological traits, it is essential to remove resource
limitations to identify patterns in plasticity (e.g. controlling for
water content allows identifying ‘active’ osmoregulation, i.e. actual
changes in number of moles of solute, as opposed to solute
concentration, a passive change). Nevertheless, in general, plant
functions can be both actively and passively regulated in response to
different types or intensities of resource use change. Experimentally
separating out active and passive responses is more complex at the
scale of whole plants, than for the individual traits (Forsman, 2015;
Brooker et al., 2022), but may be important as active, rather than
passive processes, are more likely to allow for mitigation of
sustained drought effects.

The occurrence of nonadaptive plasticity in plants may be more
common than adaptive plasticity, because prolonged or intense
stress is likely to push a plant away from optimal functioning (van
Kleunen & Fischer, 2005; Caruso et al., 2006; Ghalambor et al.,
2007). Yet, studies explicitly identifying nonadaptive and
maladaptive plasticity in response to drought are less common
(Caruso et al., 2006; Ram�ırez-Valiente et al., 2021). However,
elevated mortality or decreased growth in response to drought
(Allen et al., 2010; Hubau et al., 2020) would suggest adaptive
plasticity is likely to be at best incomplete (Ghalambor et al., 2007).
Evidence of drought legacies (Muller & Bahn, 2022), however, is
likely to be at least partly the result of maladaptive or nonadaptive
plasticity, for example xylem cavitation fatigue leading to enhanced
mortality (Anderegg et al., 2013). Additionally, many studies of
plasticity only consider changes in traits (Cui et al., 2020; Stotz
et al., 2021), yet to prove whether plasticity is adaptive it is vital to

Box 1 Glossary

Adaptation – Phenotypic changes at a population level which
increase fitness and are caused by heritable changes in the genome
across generations (Gould & Lewontin, 1979).
Phenotypic plasticity – An expression of different phenotypes in
response to environmental conditions,which occurwithout a change
to the genome sequence. These may be both reversible and
nonreversible (developmental) changes (Beaman et al., 2016).
Adaptive plasticity – Plastic changes to phenotype which increases
fitness or survival (Nicotra & Davidson, 2010).
Nonadaptive plasticity – Plastic changes to phenotype with no
impact on fitness, that is a neutral change (Ghalambor et al., 2007).
Maladaptiveplasticity–Plastic changes tophenotypewhich reduces
fitness (Ghalambor et al., 2007).
Acclimation – Reversible changes in a functional trait in response to
changes to a single environmental variable (usually under controlled
laboratory conditions; Wilson & Franklin, 2002).
Acclimatisation – Reversible changes in a functional trait in response
to changes to one or more environmental variables (usually under
field conditions; Wilson & Franklin, 2002).
Developmental plasticity – Plastic changes to phenotype which
occurs at the early stages of development of an organism in response
to its environment (Beaman et al., 2016). These changes can be
reversible changes in functional traits, but are more often associated
with irreversible structural changes, which influence themature form
of the organism.
Passive plasticity – Plastic changes to phenotype driven by growth-
limiting resource shortages (Brooker et al., 2022). These are
automated responses of the organism which solely reflect the
constraint of biochemical and biophysical laws (Havird et al., 2020).
Active plasticity – Plastic changes to phenotypemanifested through
a physiological response mechanism activated by the plant as it
adjusts to a change in the environment (Brooker et al., 2022).
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assess the impact on long-term fitness (van Kleunen &
Fischer, 2005; Valladares et al., 2006).

Measuring fitness is not simple in wild plant populations and is
dependent on the metric used to define it (Brooker et al., 2022).
The ultimate metric for fitness is reproductive success, but this can
only be assessed at population level and requires assessment over
long timescales in long-lived plant species, or those with irregular
seed production. At a multi-decadal tropical forest drought
experiment, in the years directly following the implementation of
the drought, there was a considerable decline in flower and fruit
production, but more than a decade later, this greatly increased to
levels above those in nondroughted control forest (Rowland
et al., 2018). Experimental droughts on decadal timescales to detect
such changes are extremely rare (Meir et al., 2018; Kroel-Dulay
et al., 2022; Limousin et al., 2022); therefore, survival metrics, like
growth and mortality, are often more appropriate metrics of
drought-related fitness on shorter timescales and at the scale of
individual plants. Using thesemetrics requires caution, however, as
a growth-mortality trade-off in response to drought is likely to exist
(Russo et al., 2021). For example, an increase in wood density in
response to drought may reduce growth, but increase survival,
making it more challenging to link changes in wood density to
fitness. However, monitoring growth and mortality is vital to
understanding the processes occurring during drought, even if they
cannot be directly linked to fitness. How woody plants use water
and carbon for growth during a drought will directly alter the
whole-plant carbon and water budgets for both individual tree and
its surrounding competitors. If both growth and survival were
monitored alongside trait changes over sufficiently long periods of
time before, during and after drought, they could provide a
powerful database to assess how changes in traits influence whole-
tree survival.

It is important to consider how experimental set-ups influence
the hypotheses which can be tested regarding drought. Traits
within a single species often vary across moisture or aridity
gradients (Fig. 1; Anderegg & HilleRisLambers, 2016; Rosas
et al., 2019; Lopez et al., 2021). Although the intraspecific
phenotypic variability across gradients could be indicative of a
plant’s potential for individual-level plasticity, the observed trait
differences could also be genetically determined. Such genetic
changes across populations have been shown to promote drought
survival within model species (Kalladan et al., 2017). However,
attributing variation in functional traits to genetic differences
within wild populations is rare, even if genetic differences within
species across aridity gradients are common (Honorio Coronado
et al., 2014). Techniques are being developed that could link more
cost-effectively genetic and functional changes to identify the
genetic component of drought stress adaptation (Kl�ap�st�e
et al., 2020). Yet, without separating out plastic and genetic
causes of trait variation, attributing intraspecific variation across a
gradient to adaptive plasticity is likely to lead to overestimating the
capacity of plants to respond to drought on the timescales
associated with climate change.

Experimentally testing for plasticity in controlled environ-
ments or through common garden experiments by exposing
individuals from the same local population, that are assumed to be

genetically similar, to different growth and/or episodic drought
conditions removes the impact of genetic differences among
populations. These studies can be used to build reaction norms or
response functions to environmental changes (Box 2; Collyer &
Adams, 2007), as well as to evaluate how plasticity differs between
populations from different environmental origins (Fig. 1).
Furthermore, controlled experiments can evaluate the impact of
varying drought intensity, duration and stress memory, through
implementing multiple cycles of drought and recovery, and so
assess the effects of acclimation during subsequent droughts
(Fig. 1). This is important as plants can adjust to drought through
increasing resistance to the drought event, or through increasing
capacity to recover from the drought event (Ingrisch &
Bahn, 2018). However, the duration of the drought and recovery
are likely to alter both of these drought adjustments (Zweifel
et al., 2020).

Unlike studies of natural gradients, experimental studies are
normally only possible on seedlings of woody species, or
herbaceous species. Seedlings can have different drought response
relative to large trees (e.g. Cavender-Bares & Bazzaz, 2000), due to
greater potential for developmental plasticity. The combined
developmental and environmental plasticity can mean drought-
related plasticity can have greater consequence for survival and
fitness of seedlings, relative to mature trees. This is particularly
important if drought-induced mortality of large trees releases
additional light and soil water resource for seedlings to compete for
in dry conditions (Bartholomew et al., 2020; Giles et al., 2022).
These responses can only be measured in natural conditions, and
plants in controlled conditions will give very different responses
(Poorter et al., 2016). This makes extrapolation from experiments
complex and likely to give biased assessments of plasticity, if viewed
in isolation. Consequently, there is currently no perfect way to test
for drought plasticity within wild populations of long-lived plants.
Ideally, we should seek to use multiple experimental approaches
(Fig. 1) in order to more robustly identify common patterns of
drought adjustment across contrasting approaches.

II. Summarising plasticity in key traits in response to
drought

Within this section, we summarise the changes which have been
observed in key individual plant traits in response to sustained
drought stress, evaluating the variability with which both above-
and belowground components of a plant can respond to drought.

1. Drought and aboveground traits

Several mechanisms are involved in plant adjustments to reduced
water availability. In this section, we summarise how aboveground
traits may respond to sustained drought stress, while also
considering the impact potential changes in aboveground
morphology may have on these traits and more generally on a
plant’s capacity to resist drought stress.

Plant hydraulic traits Plant hydraulic traits are vital controls on
drought-related resistance and tolerance; however, relatively few

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

New Phytologist (2023) 239: 1173–1189
www.newphytologist.com

New
Phytologist Tansley review Review 1175

 14698137, 2023, 4, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19000 by T

est, W
iley O

nline L
ibrary on [13/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



studies have examined plasticity in plant hydraulic traits. In
response to drought stress, many species construct a xylem more
resistant to embolism (Beikircher&Mayr, 2009;Awad et al., 2010;
Corcuera et al., 2011; Lamy et al., 2011). More negative values of
P50 (the water potential at 50% loss of xylem hydraulic
conductivity) allow plants to maintain photosynthesis under lower
soil water potentials and have been associated with increased
survival, potentially representing adaptive plasticity. However,
changes in P50 in response to drought are lower than 1MPa across
almost all studies (Corcuera et al., 2011; Lamy et al., 2011;
Wortemann et al., 2011; Aranda et al., 2015; Bittencourt
et al., 2020). Changes in P50 of this magnitude are not sufficient

to compensate for the decrease in minimum leaf water potentials
experienced during sustained drought, ultimately decreasing
hydraulic-safety margins (Fichot et al., 2010). By contrast,
increases in xylem vulnerability to embolism have been found
under dry conditions for some species (Martinez-Vilalta
et al., 2009; Barnard et al., 2011; Bucci et al., 2012). This may
represent maladaptation or be driven by higher water storage and
acquisition capacities of populations growing under dry condi-
tions, supported by reductions in wood density and greater
hydraulic conductivity (Bucci et al., 2012). These studies provide a
good case study of the difficulties to define active vs passive
plasticity. Native hydraulic conductivity decreases for stress levels

Natural trait
distribution

Photosynthetic capacity
Hydraulic efficiency
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Photosynthetic capacity
Hydraulic efficiency

Photosynthetic capacity
Hydraulic efficiency

Photosynthetic capacity
Hydraulic efficiency

Natural drought gradient

Common garden
experiment

Drought intensity
experiment

Soil drought
recovery

Fig. 1 Conceptualfigure showing thedifferent experimental set-ups,whichare commonlyused toevaluatehowplantsadapt todrought.Theexperimental set-
ups include natural drought gradients, common garden experiments and drought intensity experiments in laboratories, including soil drought recovery. Trees
and seedlings in red indicate those which have come from a dry end of a natural gradient and which have no capacity for plasticity in either photosynthetic
capacity or hydraulic efficiency. Blue trees and seedlings indicate those which have come from a wet end of a natural drought gradient and have equally
high potential for plasticity in both photosynthetic capacity and hydraulic efficiency in response to both drought and irrigation. Similarly, the coloured lines
indicate how the coloured seedlings are linked to the mother trees. The colours of the pots indicate the differing intensities of water addition (blue) or water
removal (red). Grey dashed arrows indicate the theoretical results from each experiment in the form of a probability density function (PDF) for each tree
typewithin each experimental type. These PDFs showhow trait distributionsmay be altered by the experimental set-up, assuming drier conditions foster shifts
in mean and more limited variance (Sections I, III), the colours of the lines in the PDFs correspond to the colours of the trees and seedlings. Repeated
applicationof the same treatment canbeemployed to assesswhether acclimation impacts on subsequent plant responses andfitness levels.Note the red lines in
the PDFs never move as the species from this environment has no capacity for plasticity.
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Box 2 Plasticity and trait coordination

Weuseexemplaryvalues to illustrate thepotential relationshipsexistingbetween reactionnorms,plasticityof coordinationandcoordinationofplasticity
between two traits. Here, we employ values of predawn water potential, Ψpd, rooting depth and water potential at turgor loss point Ψtlp.
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Fig. B1 Reaction norms ofΨtlp and rooting depth as a function ofΨpd (left and right inset, respectively) and plasticity of coordination between rooting
depth andΨtlp (main panel) are simulated here for 20 different genotypes (cf., shade of blue) under three different levels of drought stress (No,Medium,
High) in a commongarden experiment. Hence, bothΨtlp and rooting depth differ for each genotype and drought treatment. For the two genotypeswith
extreme values, the two reaction norms of Ψtlp and rooting depth are plotted in the inset and their respective values (circle, triangle and square for the
three drought levels) are connected with black arrows in the main panel. The three thick black curves in the main panel give the cross-genotype
coordination of the two traits at each drought level.
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Fig. B2 Using the samedata used in Fig. B1 of this Box, this figure plasticity estimates (abbreviatedwith the symbolD) can be constructedusing either the
standard deviations ofΨtlp and rooting depth for each genotype across the three levels of water availability (main panel) or the log ratios of the values of
high Drought/no drought (inset). The apparent inversion in the relationship when log ratios are employed is caused by the fact that standard deviations
measure the absolute range of the responses,whereas log ratios providemetrics of proportional responses in the traits. Hence, attention is required in the
interpretation of plasticity metrics; n.u., unitless quantity.
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greater than the xylem air-entry point, a form of passive plasticity.
Upon a rainfall event, assuming no xylem refilling or regrowth, the
vulnerability curve shifts towards amorenegativeP50, following the
embolisation of vulnerable conduits (Sperry et al., 2017). This
apparent acclimatisation to drought suggests that xylem vulner-
ability curves should be determined only in current-year wood
before seasonal drought events. This approach determines a
potential vulnerability curve under optimal conditions, but leaves
open the question of what level of vulnerability should be expected
for older xylem under natural conditions. However, it should be
considered that P50 may not be the most relevant parameter to
determining embolism resistance (Meinzer et al., 2009). Con-
sidering this and the evidence above, it seems adaptive plasticity in
P50 is unlikely to significantly mitigate against future droughts.

Much greater plasticity has been observed in both sapwood-area
and leaf area-specific branch conductivities (Ks and Kl, the second
variable being less frequently determined than the first), albeit with
lower, similar and greater values being reported when comparing
dry vs mesic environments (Maherali et al., 2004; Cornwell
et al., 2007; Martinez-Vilalta et al., 2009; Corcuera et al., 2011).
Greater Ks may be beneficial under short dry periods by avoiding
negative xylem water potentials and preventing xylem embolism
(Martinez-Vilalta et al., 2009; Peguero-Pina et al., 2011). Similarly,
under conditions where light is not limiting, increasing Ks in
response to limited water availability may allow trees to compete
more effectively for water (Giles et al., 2022). By contrast, a
reduction in Ks in response to drought is usually related to a
reduction in vessel size, which might result in a xylem less
vulnerable to embolism. Given the variability which exists across
these data, there appears to be insufficient evidence on whether and
how adaptive plasticity in hydraulic efficiency can help minimise
future drought impacts. The fact that plasticity in Ks/Kl is
substantially greater than the plasticity observed in P50 suggests a
strict safety–efficiency trade-off is unlikely. Instead, changes in Ks

may reflect plant structural changes (see ‘Plant structure’ in
Section II), such as changes in Huber values HV, the sapwood
cross-sectional divided by the distal leaf area, given that these two
properties covary negatively across species (Mencuccini
et al., 2019), even when phylogeny is accounted for (Sanchez-
Martinez et al., 2020).

Plant turgor Plasticity in the regulation of cell volume and/or
turgor via osmotic and elastic changes has been studied extensively
for leaves (much less so for roots) with regard to the impacts of the
accumulation of solutes inside cells (osmotic adjustment),
especially in crop physiology and yield (Hsiao et al., 1976),
contrasting the limited study of other hydraulic traits. A review of
pre- vs postdrought values (Bartlett et al., 2014) found a moderate
degree of plasticity in turgor loss point (Ψtlp < 0.5MPa on average,
i.e. 16% change relative to the meanΨtlp) and even lower plasticity
in osmotic potential at full turgor (< 0.3MPa on average). No
significant differences were found across biomes, albeit with a
tendency towards higher plasticity in dry biomes. Because a large
range of compatible solutes exist (inorganic ions such as potassium,
sugars, amino acids such as proline or glycine betaine, and sugar
alcohols), exploration of their role in osmotic adjustment is

benefiting from current advances in metabolomics. Solute
accumulation in leaves has often been shown to occur also at the
daily time scale (e.g. Sancho-Knapik et al., 2016), via soluble
nonstructural carbohydrates. Osmotic adjustment during daytime
can be equivalent in magnitude to the seasonal effects reported
above (i.e.< 1MPa changes in osmotic potential). Although little is
known on the mechanisms regulating this process, it is likely that if
sustained for long periods, consistent daily osmoregulation may
have long-term consequences for allocation to sinks (including
turgor regulation in roots) and levels of carbohydrate storage
during/following droughts. Overall, plasticities in Ψtlp and in
resistance to embolism appear to be of similar and relatively small
magnitude, suggesting that significant limitations and/or costs exist
in their expression. Whether plasticities in these two traits are
coordinated remains unclear, as one would expect given the strict
coordination between water status, stomatal behaviour and
vulnerability to embolism.

Photosynthetic traits In contrast to most hydraulic traits, many
more studies on plasticity in photosynthetic traits exist. However,
adaptive plasticity is rare in these studies, as prolonged drought
generally has a negative impact on photosynthesis, either through
stomatal conductance limitationsornonstomatal limitation, suchas
reduced mesophyll conductance or maximum photosynthetic
capacities (Flexas et al., 2004; Martin-Stpaul et al., 2013; Zhou
et al., 2016;Gourlez de laMotte et al., 2020; Rowland et al., 2020).
There are examples of plastic responses which enable plants to
maintain or increase photosynthetic output under drought
conditions, for example, plants that have evolved facultative
CAM, the ability to reversibly change from C3 to CAM
photosynthesis during drought stress (Winter & Holtum, 2014).
This enables a plant to switch to undertakeCO2uptake andfixation
during the night prolonging net carbon gain at a lower water cost.
However, the majority of CAM plants are succulents, and within
woody plants, particularly large ones,CAM is rare, possibly because
fixation of carbon in the day is highly restricted by total storage
capacity for night-time fixation products (Keeley&Rundel, 2003).
Given this, the fact that the switch fromC3 toCAM ismostly a very
long evolutionary process (Keeley&Rundel, 2003) and that only a
handful of plants to date have been observed to plastically switch
fromC3toCAMduringwater stress (Winter&Holtum,2014), it is
perhaps more appropriate to focus on the potential adaptive gains
that reducedphotosynthesis offers aplantduring sustaineddrought.

Downregulating photosynthesis may be a form of drought
adjustment to protect the hydraulic system (Martorell et al., 2014),
or limit the metabolic costs of maintaining the photosynthetic
machinery needed to generate high photosynthetic outputs when
environmental conditions are unfavourable (Rowland et al., 2020).
These adjustments could serve to increase long-term survival and
growth. However, changes in leaf biochemistry can also happen in
response to changes in leaf structure, which may be an equally or
more important driver of drought adaptations in plants (see ‘Plant
structure’ in Section II).

Plant structure Structural changes, such as changes in HV, may
be the most likely mode for achieving plasticity aboveground,
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especially considering the potential for developmental plasticity
(Tyree & Ewers, 1991) and the high within-species variation
(including phenotypic plasticity) observed in HV and other
allocation traits, relative to hydraulic or leaf economic spectrum
traits (Anderegg et al., 2022). It has been widely observed that a
plant’s hydraulic system can becomemore vulnerable to drought as
trees grow taller (Bennett et al., 2015; Rowland et al., 2015;
Bittencourt et al., 2020). Shorter individuals and individuals which
are multi-stemmed, rather than single-stemmed, have also been
shown to be less sensitive to drought, maintaining greater growth
during sustained drought events (Alfaro-S�anchez et al., 2020). As
changes in height are likely to be a mechanism responsible for
altering the hydraulic system of a plant (Fajardo et al., 2019;
Soriano et al., 2020; Anfodillo & Olson, 2021; Bittencourt
et al., 2022), changes in architecture in response to sustained
drought are potentially the most viable way a plant can adapt its
hydraulic system. These changes in height are most likely a passive
response to a drier climate reducing the turgor for growth; however,
they are likely to lead to drought adaptive changes in the plant
hydraulic system. Within wild plant populations, there is limited
evidence to link developmental plasticity in architecture and
growth to the mechanisms that underpin such changes in the plant
hydraulic system, particularly at the cellular level (Fajardo
et al., 2019). For mature trees, this may be because any changes
in the function of newly grown wood are likely to be masked by the
function of existing oldwood.Given this, itmay be that a tree could
more efficiently change through throwing away old tissues,
particularly those with larger, more vulnerable vessels, or indeed
more drastic changes such as branch shedding (Anfodillo &
Olson, 2021).

Developmental changes in leaves also occur during prolonged
drought to limit water losses. Leaves grown in drought
conditions can have reduced stomatal density and size (Xu &
Zhou, 2008). Leaf mass per area (LMA) can also increases in
response to drought, enabling a tree to create leaves which are
more resistant to wilting (Poorter et al., 2009; Anderegg et al.,
2021). Such changes in LMA will have subsequent impacts on
leaf biochemical relationships, potentially changing water, light
and nutrient-use efficiency. Similarly, changes in LMA are
directly tied to changes in whole-plant leaf area and HV,
making it potentially difficult to isolate leaf-level plasticity from
whole-plant structural changes. Joint experimental and model-
ling studies have suggested that leaf shedding or reduced leaf
growth is the most effective strategy to protect trees from
subsequent drought events (Nadal-Sala et al., 2021; Sabot
et al., 2022). This is supported by evidence from local and
global environmental gradients, where plants in drier environ-
ments tend to have greater HV to minimise water losses
(Mencuccini et al., 2019; Anderegg et al., 2021). Thus, when
the potential for structural changes in wood and leaves are
considered together, it is possible that developmental changes to
canopy architecture (HV), height and branching architecture
(e.g. branch shedding) could be more relevant to facilitating
long-term drought adjustment than acclimatisation of functional
traits; however, considerably more data are necessary to robustly
establish this.

2. Drought and belowground traits

The response of belowground traits to drought depends on soil
properties that control water availability in space and time. Long-
lived plants growing in soils with substantial water storage at depth,
or access to groundwater,may increase belowground allocation and
rooting depth to maintain water access (Hacke et al., 2000;
Pivovaroff et al., 2021). On the contrary, where there is limited soil
water storage, or short-lived plants cannot invest in accessing deep
reserves, highly efficient water uptake and transport may be
essential to take advantage of infrequent rainfall events (Alder
et al., 1996). Such strategies may result in small root xylem
hydraulic-safety margins and high rates of root mortality, with
implications again for resource allocation belowground (Chenle-
muge et al., 2015). When considering root adjustments during
drought, it should also be emphasised that water transport from
the root surface to the xylem may represent a greater proportion
of root hydraulic resistance than transport through the xylem
itself (Bartlett et al., 2022). Therefore, adjustments to enhance
symplastic and apoplastic water movements may be extremely
important (Vadez, 2014).

In this section, we summarise how belowground traits may
respond to drought, but emphasise that detecting trait plasticity is
even more challenging below ground. Because the belowground
strategies that plants employ have direct implications for temporal
patterns of water uptake, monitoring predawn and midday leaf
water potentials may help identify how above- and belowground
strategies combine to control responses to drought.

Allocation and rooting depth Across spatial gradients, the
proportion of carbon allocated belowground tends to be greater
where soil water availability is lower, with the vertical or horizontal
extent of rooting systems increasing (Hacke et al., 2000; Addington
et al., 2006; Xu& Li, 2008).Where there is water storage at depth,
deeper-rooted species can maintain greater access to water during
droughts, as indicated by less negative predawn leafwater potentials
(Nardini et al., 2016). Furthermore, during a drought, or drought
recovery (Hikino et al., 2022), the proportion of carbon allocated
belowground also tends to increase (Zhang et al., 2019; Brunn
et al., 2022) together with rooting depth in some cases; in a long-
term drought experiment in Queensland, rainforest trees increased
average rooting depth (Pivovaroff et al., 2021).Overall, greater root
drymatter per unit leaf area (Potkay et al., 2021)may helpmaintain
water supply, but greater belowground allocationmay also limit the
potential for aboveground traits to respond to drought (Zhou
et al., 2020; Agee et al., 2021; Pagay et al., 2022), while increases in
rooting depth could be maladaptive under nondrought conditions
if nutrient uptake is reduced (Berkelhammer et al., 2022).

Root hydraulic and morphological traits Where plants cannot
access soil water reserves, changes in root hydraulic traits are key to
maintaining water uptake (Vadez, 2014). Hydraulic resistance is
thought to be greater below than aboveground, especially under
drought conditions (Hacke et al., 2000; Xu & Li, 2008; Bartlett
et al., 2022). Within species, across gradients of water variability,
root hydraulic traits can vary substantially serving to reduce spatial
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variability in water uptake (Hacke et al., 2000). High hydraulic
conductivity through wide xylem vessels may be crucial in allowing
plants to move water greater distances throughmore extensive root
systems (Domec et al., 2010), or to compete to take up water
rapidly following infrequent rainfall events (Alder et al., 1996;
Chenlemuge et al., 2015). The need to maintain high maximal
conductivities may explain why xylem tends to be more vulnerable
to embolism in roots than in aboveground tissues (Alder
et al., 1996; Hacke et al., 2000), although differences between
stem and root vulnerabilities are not always substantial (Peters et al.,
2021). This vulnerability also suggests that the ability of plants to
rapidly recover damaged xylem vessels may be a key drought
recovery adjustment (Alder et al., 1996; Schenk et al., 2021). In
addition, becausewater transport from the root surface to the xylem
often contributes more to hydraulic resistance in the root system
than transport through the xylem itself (Bartlett et al., 2022),
increases in symplastic (e.g. through aquaporins) and/or apoplastic
water movement within roots may be crucial in promoting greater
rates of water uptake (Vadez, 2014). However, there is much less
understanding of these processes in wild plants than in crops.

In terms of root morphology, very fine roots or root hairs can
increase the contact between plants and soils, allowing plants to
explore finer soil pores that may be the last sources of water in
drying soils, so reducing the effect of drought on leaf water
potentials (Marin et al., 2021). Furthermore, the roots produced
during droughts themselves tend to relatively fine (Zhang
et al., 2019), maximising the volume of soil explored as resources
for constructing roots decline. In addition, finer roots may help
reduce hydraulic resistance (Bartlett et al., 2016) by shortening
distances between root surfaces and xylem vessels via a thinner
cortex (Zhang et al., 2019). Ultimately, interactions between root
morphological and hydraulic traits are likely key in maintaining
water uptake during drought.

Extended phenotype: symbioses, exudation and plant–soil
interactions Symbioses with fungi and bacteria may reduce
drought impacts in multiple ways. Extensive ectomycorrhizal
networks may promote water uptake distal to the root surface
(Usman et al., 2021; Wang et al., 2021), while colonisation by
arbuscular mycorrhizal fungi, dark septate endophytic fungi and
plant growth-promoting bacteria can induce physiological,
biochemical and morphological changes in roots that promote
drought tolerance. Such responses include increases in root
hydraulic conductivity (Quiroga et al., 2017) and enhanced
osmolyte and anti-oxidant enzyme production (Kivlin et al., 2013;
Ngumbi&Kloepper, 2016; He et al., 2019; Li et al., 2019). Given
that the nature of these symbioses can change during droughts
(Grams et al., 2021), they may be a critical and overlooked
component of the overall plant drought response.

Changes in interactions with free-living soil microbes may be
equally significant. Plants release exudates that can promote the
growth of beneficial soil microbes (Williams & de Vries, 2020).
Under drought, exudation rates can increase with exudates also
changing chemically (Gargallo-Garriga et al., 2018) and can
induce: microbial production of antioxidants and associated
enzymes and so reduce root damage; and/or changes in soil

physical or chemical properties that increase soil water access
(Bitterlich et al., 2018; Gargallo-Garriga et al., 2018; Williams &
de Vries, 2020). Reflecting this, plants inoculated with microbial
communities from soils that had previously experienced droughts
performed better under subsequent droughts (Li et al., 2022).
Finally, changes in relationships between plants and soil microbes
may also be crucial in maintaining or re-establishing nutrient
cycling during drought and drought recovery (Lehto &
Zwiazek, 2011).

III. Plasticity and trait integration

Individual traits covary in trait spectra, where the term spectrum
implies the coordination of traits along one axis to optimise a well-
defined set of physiological functions under prevailing environ-
mental conditions (nutrient stoichiometry, leaf, wood or root
economics spectra, wood anatomical/hydraulic properties). There-
fore, plasticity can exist not only in individual traits, but also in the
manner in which traits covary within each axis of the spectrum
(shifts in trait syndromes, upwards or downwards along common
regression lines, intercept and/or slope shifts), creating synergistic
or compensatory effects (Nielsen & Papaj, 2022). Plasticity in trait
coordination (first part of Box 2) has seldom been studied in the
context of multivariate plasticity of drought-related trait spectra.
To illustrate these concepts, we use a bivariate framework where we
consider the example of the potential coordination between Ψtlp

(water potential at the turgor loss point) and plant rooting depth.
Reaction norms are commonly built by quantifying how
phenotypic traits vary as a function of external environmental
variables, for example precipitation or temperature. We employ
here instead Ψpd, which indicates the level of soil water stress as
perceived by the plant, to describe the potential reaction norms of
rooting depth and Ψtlp (insets of Fig. B1 in Box 2). These reaction
norms may represent acclimation via developmental plasticity and
osmoregulation, respectively. We now consider the potential
coordination between Ψtlp and rooting depth across several
genotypes under three levels of drought stress (main panel of
Fig. B1 in Box 2). This coordination is relevant, because it relates to
the degree of water status regulation (e.g. hydroscape area,Meinzer
et al., 2016). These positive relationships can be thought of as
representing a continuum from drought avoidance (deep rooting)
to drought tolerance (more negativeΨtlp). The shifts from one line
to the other, aswell as the changes in the position of the points along
the curves, represent estimates of the cross-genotype plasticity in
the Ψtlp-rooting depth coordination. In this example, with
declining water availability, the coordination between Ψtlp and
rooting depth follows a flatter curve.

Using the same data, the range of variability in the reaction norm
for each genotype across treatments is a measure of plasticity of the
two traits. Plotting the plasticity inΨtlp as a function of plasticity in
rooting depth is a measure of the coordination of the plasticity of the
two traits (second part of Box 2). In this case, the relationship in the
main panel suggests that genotypes with a deep rooting system have
greater absolute plasticity inΨtlp (i.e. they aremore buffered against
variability in water availability) compared with genotypes with
more superficial roots, but the opposite trend is also possible
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(Fig. B2). As an example, Charrier et al. (2018) examined the
relationships between predawn and midday water potentials and
showed that this iso-anisohydricity axis shifted for two grapevine
varieties depending onwhether the plants were grown in the field or
in the glasshouse. They were able to trace these shifts to the
constituent traits controlling stomatal and xylem responses to soil
and atmospheric drought.

Coordination of trait plasticity may explain the variability
encountered in the Ks–P50 relationships reported in the literature,
whereby in certain species, exposure to drought results in smallerKs

and more negative P50, while in other cases, higher Ks and less
negative P50 values are observed (avoiding more negative water
potentials). Coordination of plastic responses across traits regulat-
ing different plant functions has been found. For example,
Cavender-Bares (2019) reported a negative association between
osmotic adjustment and leaf abscission in response to drought, such
that decreased Ψtlp did not reduce transpiring leaf area and vice
versa. This is consistent with a trade-off between drought avoidance
and drought tolerance strategies. These analyses are useful
in situations where knowledge of trait coordination allows
identification of a continuum in the behaviour of different species
and populations with regard to fundamental control points (e.g.
hydraulic-safety margins, degree of turgor or osmotic regulation).

There is increasing interest in understanding how drought alters
patterns of trait coordination; however, the literature remains
sparse (Dami�an et al., 2020). Collyer &Adams (2007) developed a
method to quantify phenotypic plasticity in a multivariate
framework that can be used to test for differences among groups
(e.g. species and populations) and provide inferences of their
adaptive value. This method estimates two properties of the
phenotypic change vector between two contrasting environments:
the magnitude (vector length) and the direction of the phenotypic
plasticity (vector angle). Fig. 2 shows an example of this analysis in a
bivariate framework, using the two traits represented in Fig. 1
(photosynthetic capacity and hydraulic efficiency) measured in a
common garden under two contrasting environments, dry andwet.
Magnitude defines the overall phenotypic change across environ-
ments, while direction represents changes in trait covariation and
defines the traits involved. Magnitude and direction can be
estimated for distinct genetic or phylogenetic groups to test for
associations with their climatic niche, which would provide
inferences on the adaptive value of multi-trait plasticity.

Beyond the coordination of trait means and variances within
individual spectra, plasticity in whole-plant behaviour may be
controlled by the manner in which spectra become more or less
integrated under environmental pressures (Schlichting, 1989;
Marks, 2007; Fontana et al., 2021). As a result of this multi-
dimensional plasticity, sets of (functional, structural and pheno-
logical) traits that form an integrated unit in one environment may
be only loosely integrated in a different environment, independent
of trait coordinationwithin individual functional spectra (Rowland
et al., 2021). In other words, plasticity can blur the distinction
between independent axes of trait coordination via increased or
decreased integration of multiple spectra (Pigliucci & Kolo-
dynska, 2002; Nielsen & Papaj, 2022), for example, the relation-
ships between flowering time, water-use efficiency and leaf

economics spectrum traits (Vasseur et al., 2014). Similarly,
concurrent plasticity in plant structure and functional traits can
also facilitate integration across different spectra (Nolting, 2020;
Ram�ırez-Valiente et al., 2020; Nolting et al., 2021; Sole-Medina
et al., 2022).

The analyses of plasticity of coordination, coordination of
plasticity and multi-trait plasticity illustrated in previous para-
graphs following bivariate frameworks can also be conducted for
multiple traits from multiple spectra to provide information on
integrated responses at the whole-plant level. Fig. 3 shows one
example of how amultivariate analysis could be done for a dataset of
physiological, morphological, allometric and growth traits mea-
sured in 11 oak species growing in a common garden experiment
under two contrasting water availabilities. Fig. 3(a) shows plasticity
of integration under two contrasting environments for traits related
to three functional axes. In the well-watered conditions, strong
correlations were observed within the three functional axes,
photochemistry and area-based gas exchange, leaf morphology
and the leaf economic spectrum, and allometric and growth traits,
indicating trait coordination. Some correlations among traits from
different functional axes were observed, for instance, between leaf
area, mass-based gas exchange and allometric traits, which is
indicative of trait integration. When plants were grown under dry
conditions, correlations between traits both within spectra and
between spectra changed, indicating plasticity in both trait
coordination and trait integration. For example, species with
higher photochemical efficiency (as measured by Fv

0/Fm0) had
significantly larger absolute growth rate under dry conditions,
but not under mesic conditions. Early studies proposed tighter
trait coordination in drier environments, presumably as result
of an integrated phenotypic response under more stressful
conditions (Schlichting, 1989; Gianoli, 2004; Gianoli & Palacio-
Lapez, 2009). Results from some empirical studies are consistent
with this hypothesis (Sole-Medina et al., 2022). However, results
shown in Fig. 3(a) are in line with findings from other studies that
suggest this is not the general rule (e.g. Mallitt et al., 2010;
Matesanz et al., 2010, 2021; Ram�ırez-Valiente et al., 2020). The
third panel in Fig. 3(a) shows that correlations between plasticities
largely occurred within spectra (i.e. plasticity of trait coordination)
and that only leaf morphologic and allometric traits showed
correlations between plasticities from different spectra (i.e.
plasticity of trait integration).

Fig. 3(b) shows the results from the multivariate analyses
following Collyer & Adams (2007) for the same dataset. The
magnitude of plasticity (the length of the vector in the multivariate
space) was associated with the species’ precipitation niche (Fig. 3c),
supporting the idea that differences among species resulted from
evolution under contrasting climates. The direction of plasticity
(the angle of the vector) ranged between 40° and 80° for most
species, with the angles mainly aligned with variations in
physiological traits, such that decreased gas exchange and
photochemistry under drought were the main drivers of the
multivariate plastic response across environments. Note that for
Quercus coccifera, the direction of plasticity was completely
different compared with any other species, suggesting that different
processes were at play.
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Finally, it is important to bear in mind that multivariate
estimates ofmagnitude and direction of plasticitymight be affected
by the number of traits and functional axes used for their
calculation. Two principal component analyses are presented for a
subset of physiological (Fig. 4a) or morphological (allometric,
growth and leaf morphology traits, Fig. 4b) traits. Both the
magnitude and the direction as well as the associations with the
species’ climatic niche varied across PCAs. In Fig. 4(a), the patterns
are very similar to Fig. 3(a), with species responses ordered by
decreasing gas exchange in response to drought. By contrast, in
Fig. 4(b), the magnitude and especially the direction of plasticity
changed. Since the direction of multivariate plasticity indicates the
traits involved in the phenotypic change across environments, it
might be expected to not follow the same patterns across PCAswith
different sets of traits. However, changes in magnitude of
multivariate plasticity across sets of traits show the need to be
cautious when interpreting multivariate properties of phenotypic
plasticity, particularly if a reduced number of traits and spectra are
measured. In summary, these analyses represent different

approaches to explore multivariate responses to environmental
changes and demonstrate the need to move towards a more
integrated functional perspective to study how species adjust to a
drier environment.

IV. Future directions

Based upon the analyses undertaken in the three sections above,
here we outline four key areas for future research to advance our
knowledge of how plants can adjust to drought.

1. Going beyond studies of spatial trait variation to
understand drought impacts

As a community, we must recognise the limits of using spatial
differences in traits as a way to understand plant plasticity. Spatial
variation in traits may provide some insight into the potential of
species to adjust their phenotypes in response to drought; however,
it confounds genetic changes and plastic processes. Variations in
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Photosynthetic capacity

Common garden
experiment

Wet origin, dry climate
Dry origin, dry climate
Wet origin, wet climate
Dry origin, wet climate

Fig. 2 Theoretical diagram of a multivariate reaction norm based on theory from Collyer & Adams (2007). Using the example of potential results from the
common garden experiment from Fig. 1, we demonstrate how themagnitude and the direction of drought plasticity in photosynthetic capacity and hydraulic
efficiency could vary as individuals of a species from the wet end of a climate gradient are shifted to the dry end (from blue to red circle), and individuals of
a species from the dry end of a climate gradient are shifted to the wet end (from red to blue square). Colours indicate the climate the individuals are being
grown within, either wetter (blue) or drier (red). The magnitude of the plasticity response in each trait is determined by the length of the vector line between
individuals derived from the same original populations, but exposed to different climates (overall phenotypic change across environments). The direction of
the plasticity change is calculated from the angle of the slope between individuals derived from the same original populations, but exposed to different
climates (the change in trait covariation). In this hypothetical example, individuals originally derived from the drier end of the environmental gradient (squares)
have no potential for plasticity so the squares overlap (striped red and blue square). The individual from the wet climate origin decreases both its
photosynthetic capacity and hydraulic efficiency as it moves into the drier climate (see also Fig. 1).
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Fig. 3 Multivariate analyses of phenotypic plasticity conducted for a dataset of 11 oak species grown under contrasting water availability treatments in a
common garden experiment. (a) Plasticity of integration (blue and red networks) and integration of plasticity (black network) analyses. Network diagrams
depict pairwise species correlations between traits in the well-watered (blue network) and drought (red network) treatments and between plasticity of traits
across treatments (black network). Positive and negative relationships are depicted by continuous or dashed lines, respectively. Only significant correlations
(P < 0.05) are shown. Coloured circles represent physiological (green), morphological (grey) and growth and allometric traits (orange). (b) Multivariate
phenotypic plasticity for each species for the first two axes of a principal component analysis of species trait means measured in well-watered and drought
conditions. Diamonds indicate trait loadings, with colours representing physiological (green), morphological (grey) and growth and allometric traits (orange).
Circles indicate species scoresunderwell-watered (blue) anddrought treatments (red)withconnecting lines representingvectorsofphenotypic change for each
species. (c) Associations between the average climatic niche (annual precipitation) of species and the magnitude (upper) and direction (lower) of multivariate
phenotypic plasticity. Black dots represent species magnitudes and directions obtained from vectors of phenotypic change in (a). Grey-shaded areas represent
95% confidence intervals. The traits are the following: maximum quantum yield of PSII in light (Fv

0/Fm0), effective quantum yield of PSII (ФPSII),
nonphotochemical quenching (NPQ), area-based photosynthesis rate (Aarea), area-based stomatal conductance (gs,area), whole-plant leaf-specific hydraulic
conductance (Kplant), mass-based photosynthetic rate (Amass), mass-based stomatal conductance (gs,mass), water-use efficiency (WUE), leaf lamina area (LA),
specific leaf area (SLA), absolute growth rate (AGR), relative growth rate (RGR), leaf area ratio (LAR), Huber value (HV), root biomass ratio (RR), root-to-shoot
ratio (RS). CAN,Quercus canariensis; CER,Quercus cerris; COC,Quercus coccifera; FAG,Quercus faginea; LUS,Quercus lusitanica; PET,Quercus petraea;
PUB,Quercus pubescens; PYR,Quercus pyreanica; ROB,Quercus robur; ROT,Quercus rotundifolia; SUB,Quercus suber. Data extracted from Ram�ırez-
Valiente et al. (2020).
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traits across drought gradients will likely overestimate the potential
for plasticity to respond to rapid climate change. This is particularly
pertinent when we think of the ongoing development of optimality
models, which predict changes in traits from environmental
variables (Harrison et al., 2021). For these models to account for
plasticity, we must go beyond using spatial databases such as TRY

(Kattge et al., 2011) and start using datasets that exclude potential
genetic effects (i.e. trait plasticity meta-analyses, cf., Cui
et al., 2020; Stotz et al., 2021). These meta-analyses are in their
infancy and substantially greater experimental studies are needed to
build on the number of species and biomes included in these
studies. These studies should preferably be designed not only to

Fig. 4 Multivariate analyses of phenotypic plasticity for a dataset of 11 oak species grown under contrastingwater availability treatments in a commongarden
experiment as in Fig. 2 for different subsets of traits. In panels on the left, trait loadings (diamonds) and species scores (circles) from a principal component
analysiswere obtained from (a) only physiological traits (green) and (b) onlymorphology (grey) andgrowth traits (orange). Colours for species scores represent
well-watered (blue) and drought (red) treatments, respectively. The panels on the right depict associations between the average climatic niche (annual
precipitation) of species and themagnitudeanddirectionofmultivariatephenotypicplasticity obtained fromthedifferent subsets of traits, (c) onlyphysiological
traits and (d) only morphology and growth traits. Black dots represent species magnitudes and directions obtained from vectors of phenotypic change. Grey-
shaded areas represent 95%confidence intervals. The traits are the following:maximumquantumyield of PSII in light (Fv

0/Fm0), effective quantumyield of PSII
(ФPSII), nonphotochemical quenching (NPQ), area-based photosynthesis rate (Aarea), area-based stomatal conductance (gs,area), whole-plant leaf-specific
hydraulic conductance (Kplant), mass-based photosynthetic rate (Amass), mass-based stomatal conductance (gs,mass), water-use efficiency (WUE), leaf lamina
area (LA), specific leaf area (SLA), absolutegrowth rate (AGR), relativegrowth rate (RGR), leaf area ratio (LAR),Huber value (HV), rootbiomass ratio (RR), root-
to-shoot ratio (RS). CAN,Quercus canariensis; CER,Quercus cerris; COC,Quercus coccifera; FAG,Quercus faginea; LUS,Quercus lusitanica; PET,Quercus

petraea; PUB,Quercus pubescens; PYR,Quercus pyreanica; ROB,Quercus robur; ROT,Quercus rotundifolia; SUB,Quercus suber.
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include several elements of the experiments laid out in Fig. 1, but
also to test varying extremities of drought to understand how
plasticity varies with drought intensity.

2. Linking changes in traits to changes in metrics of
whole-plant success

Wemust be cautious not to overestimate the role plasticity will play
in mitigating the impacts of increasing drought frequency and
severity on plants. While we will not have covered all existing
studies, our review suggests plasticity in individual traits (e.g. Ψtlp,
P50) is variable and might not be sufficient to fully compensate for
the impacts of drought caused by global change forcing in a number
of species. In fact, there remains a severe lack of knowledge on the
adaptive role of plasticity across environments. In some circum-
stances, plastic changes may be the result of passive responses and
have limited impact on plant survival or growth. Alternatively,
active changes in phenotype may have a positive impact on plant
survival or growth in one set of conditions, but not necessarily
under another set of environmental conditions (i.e. differing
impacts under drought and nondrought conditions). To disen-
tangle these various possibilities, it is essential to have continuous
measures of fitness proxies that are measurable at the scale of
individual plants, like growth and survival to accompany our
measures of trait plasticity, which is currently rare within the
literature.

3. Addressing key knowledge gaps in belowground
responses to drought

To identify how whole-plant responses are controlled and whether
there are fundamental trade-offs in trait plasticity above vs
belowground, it is critical that key belowground knowledge gaps
are addressed. Determining the extent to which species can change
belowground traits in response to drought, and whether they adopt
contrasting drought response strategies depending on soil condi-
tions, requires studies across gradients in soil water availability. For
example, where deep soil water stores exist, do species respond to
drought by increasing rooting depths (e.g. Williams & Ehler-
inger, 2000), but where soil water storage is limited do the same
species shift above- and belowground traits towards conserving
water and/or competing for water after rare rain events? While
quantifying changes in belowground traits remains challenging,
identifying plasticity in water-uptake vs water-use strategies may be
facilitated bymeasuring changes in aboveground traits in combina-
tion with the monitoring of predawn water potentials during
drought events in locations with differing soil water resources.

In addition, there remain major knowledge gaps regarding how
plant–microbe–soil interactions control drought outcomes and
vulnerabilities to future droughts. In many cases, a comprehensive
examination of plasticity will need to go beyond the classical
definition of the individual plant (Rosado et al., 2018), widening
the traditional concept of an extended phenotype. Emerging
evidence suggests changes in the relationships between plants and
root and rhizosphere microbes may be a critical component of
drought, and changes in these relationships may occur rapidly and

have long-lasting impacts. Addressing this poorly understood area
may require collaboration across multiple research fields, including
plant physiologists, ecohydrologists and molecular biologists,
ecosystem ecologists, microbiologists, biogeochemists and soil
physicists.

4. Understanding plasticity within and across trait spectra

Current research must move into studying plasticity within and
across trait spectra. Plants are integrated units, andwith the purpose
of adaptive plasticity being to avoid reductions in fitness under
forcing, it is logical that this can be achieved bymeans of changes in
individual traits or through the synergies and/or compensations
occurring when combinations of traits act together, both within
and across trait spectra (Box 2; Section III). Ideally, we move
towards measuring the reaction norms of trait spectra to drought,
understanding the relationships between plasticity and trait
integration and their impacts on plant growth and survival. These
should include measures of coordinated changes in both
morphological (height, allometry, architecture and allocation)
and physiological traits. Even if the potential for drought-related
plasticity of individual traits seems limited, it is possible that many
small changes across multiple traits can lead to a significant change
in whole-plant function (Marks, 2007) and this is a key area for
future research. Network analysis has gained momentum and has
begun to produce correlative evidence of how properties of trait
networks (centrality, connectivity and clustering) vary across
environments within species. Although it is too early to extract
general conclusions from these studies (Messier et al., 2017;
Michelaki et al., 2019), these types of analyses are very promising
for studying how networks of traits change in response to drought.
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