94 research outputs found

    Genomic architecture of human neuroanatomical diversity

    Full text link
    Human brain anatomy is strikingly diverse and highly inheritable: genetic factors may explain up to 80% of its variability. Prior studies have tried to detect genetic variants with a large effect on neuroanatomical diversity, but those currently identified account for <5% of the variance. Here, based on our analyses of neuroimaging and whole-genome genotyping data from 1765 subjects, we show that up to 54% of this heritability is captured by large numbers of single-nucleotide polymorphisms of small-effect spread throughout the genome, especially within genes and close regulatory regions. The genetic bases of neuroanatomical diversity appear to be relatively independent of those of body size (height), but shared with those of verbal intelligence scores. The study of this genomic architecture should help us better understand brain evolution and disease

    Association of protein phosphatase PPM1G with alcohol use disorder and brain activity during behavioral control in a genome-wide methylation analysis

    Full text link
    OBJECTIVE: The genetic component of alcohol use disorder is substantial, but monozygotic twin discordance indicates a role for nonheritable differences that could be mediated by epigenetics. Despite growing evidence associating epigenetics and psychiatric disorders, it is unclear how epigenetics, particularly DNA methylation, relate to brain function and behavior, including drinking behavior. METHOD: The authors carried out a genome-wide analysis of DNA methylation of 18 monozygotic twin pairs discordant for alcohol use disorder and validated differentially methylated regions. After validation, the authors characterized these differentially methylated regions using personality trait assessment and functional MRI in a sample of 499 adolescents. RESULTS: Hypermethylation in the 3'-protein-phosphatase-1G (PPM1G) gene locus was associated with alcohol use disorder. The authors found association of PPM1G hypermethylation with early escalation of alcohol use and increased impulsiveness. They also observed association of PPM1G hypermethylation with increased blood-oxygen-level-dependent response in the right subthalamic nucleus during an impulsiveness task. CONCLUSIONS: Overall, the authors provide first evidence for an epigenetic marker associated with alcohol consumption and its underlying neurobehavioral phenotype

    Linked patterns of biological and environmental covariation with brain structure in adolescence : a population-based longitudinal study

    Get PDF
    Adolescence is a period of major brain reorganization shaped by biologically timed and by environmental factors. We sought to discover linked patterns of covariation between brain structural development and a wide array of these factors by leveraging data from the IMAGEN study, a longitudinal population-based cohort of adolescents. Brain structural measures and a comprehensive array of non-imaging features (relating to demographic, anthropometric, and psychosocial characteristics) were available on 1476 IMAGEN participants aged 14 years and from a subsample reassessed at age 19 years (n = 714). We applied sparse canonical correlation analyses (sCCA) to the cross-sectional and longitudinal data to extract modes with maximum covariation between neuroimaging and non-imaging measures. Separate sCCAs for cortical thickness, cortical surface area and subcortical volumes confirmed that each imaging phenotype was correlated with non-imaging features (sCCA r range: 0.30-0.65, all P-FDR <0.001). Total intracranial volume and global measures of cortical thickness and surface area had the highest canonical cross-loadings (|rho| = 0.31-0.61). Age, physical growth and sex had the highest association with adolescent brain structure (|rho| = 0.24-0.62); at baseline, further significant positive associations were noted for cognitive measures while negative associations were observed at both time points for prenatal parental smoking, life events, and negative affect and substance use in youth (|rho| = 0.10-0.23). Sex, physical growth and age are the dominant influences on adolescent brain development. We highlight the persistent negative influences of prenatal parental smoking and youth substance use as they are modifiable and of relevance for public health initiatives.Peer reviewe

    Anxiety onset in adolescents : a machine-learning prediction

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Recent longitudinal studies in youth have reported MRI correlates of prospective anxiety symptoms during adolescence, a vulnerable period for the onset of anxiety disorders. However, their predictive value has not been established. Individual prediction through machine-learning algorithms might help bridge the gap to clinical relevance. A voting classifier with Random Forest, Support Vector Machine and Logistic Regression algorithms was used to evaluate the predictive pertinence of gray matter volumes of interest and psychometric scores in the detection of prospective clinical anxiety. Participants with clinical anxiety at age 18–23 (N = 156) were investigated at age 14 along with healthy controls (N = 424). Shapley values were extracted for in-depth interpretation of feature importance. Prospective prediction of pooled anxiety disorders relied mostly on psychometric features and achieved moderate performance (area under the receiver operating curve = 0.68), while generalized anxiety disorder (GAD) prediction achieved similar performance. MRI regional volumes did not improve the prediction performance of prospective pooled anxiety disorders with respect to psychometric features alone, but they improved the prediction performance of GAD, with the caudate and pallidum volumes being among the most contributing features. To conclude, in non-anxious 14 year old adolescents, future clinical anxiety onset 4–8 years later could be individually predicted. Psychometric features such as neuroticism, hopelessness and emotional symptoms were the main contributors to pooled anxiety disorders prediction. Neuroanatomical data, such as caudate and pallidum volume, proved valuable for GAD and should be included in prospective clinical anxiety prediction in adolescents.Peer reviewe

    Cannabis use in early adolescence: evidence of amygdala hypersensitivity to signals of threat

    Full text link
    Cannabis use in adolescence may be characterized by differences in the neural basis of affective processing. In this study, we used an fMRI affective face processing task to compare a large group (n = 70) of 14-year olds with a history of cannabis use to a group (n = 70) of never-using controls matched on numerous characteristics including IQ, SES, alcohol and cigarette use. The task contained short movies displaying angry and neutral faces. Results indicated that cannabis users had greater reactivity in the bilateral amygdalae to angry faces than neutral faces, an effect that was not observed in their abstinent peers. In contrast, activity levels in the cannabis users in cortical areas including the right temporal-parietal junction and bilateral dorsolateral prefrontal cortex did not discriminate between the two face conditions, but did differ in controls. Results did not change after excluding subjects with any psychiatric symptomology. Given the high density of cannabinoid receptors in the amygdala, our findings suggest cannabis use in early adolescence is associated with hypersensitivity to signals of threat. Hypersensitivity to negative affect in adolescence may place the subject at-risk for mood disorders in adulthood

    Irregular sleep habits, regional grey matter volumes, and psychological functioning in adolescents

    Get PDF
    Changing sleep rhythms in adolescents often lead to sleep deficits and a delay in sleep timing between weekdays and weekends. The adolescent brain, and in particular the rapidly developing structures involved in emotional control, are vulnerable to external and internal factors. In our previous study in adolescents at age 14, we observed a strong relationship between weekend sleep schedules and regional medial prefrontal cortex grey matter volumes. Here, we aimed to assess whether this relationship remained in this group of adolescents of the general population at the age of 16 (n = 101; mean age 16.8 years; 55% girls). We further examined grey matter volumes in the hippocampi and the amygdalae, calculated with voxel-based morphometry. In addition, we investigated the relationships between sleep habits, assessed with self-reports, and regional grey matter volumes, and psychological functioning, assessed with the Strengths and Difficulties Questionnaire and tests on working memory and impulsivity. Later weekend wake-up times were associated with smaller grey matter volumes in the medial prefrontal cortex and the amygdalae, and greater weekend delays in wake-up time were associated with smaller grey matter volumes in the right hippocampus and amygdala. The medial prefrontal cortex region mediated the correlation between weekend wake up time and externalising symptoms. Paying attention to regular sleep habits during adolescence could act as a protective factor against the emergence of psychopathology via enabling favourable brain development.Peer reviewe

    Sex effects on structural maturation of the limbic system and outcomes on emotional regulation during adolescence

    Get PDF
    Though adolescence is a time of emerging sex differences in emotions, sex-related differences in the anatomy of the maturing brain has been under-explored over this period. The aim of this study was to investigate whether puberty and sexual differentiation in brain maturation could explain emotional differences between girls and boys during adolescence. We adapted a dedicated longitudinal pipeline to process structural and diffusion images from 335 typically developing adolescents between 14 and 16 years. We used voxel-based and Regions of Interest approaches to explore sex and puberty effects on brain and behavioral changes during adolescence. Sexual differences in brain maturation were characterized by amygdala and hippocampal volume increase in boys and decrease in girls. These changes were mediating the sexual differences in positive emotional regulation as illustrated by positive attributes increase in boys and decrease in girls. Moreover, the differential maturation rates between the limbic system and the prefrontal cortex highlighted the delayed maturation in boys compared to girls. This is the first study to show the sex effects on the differential cortico/subcortical maturation rates and the interaction between sex and puberty in the limbic system maturation related to positive attributes, reported as being protective from emotional disorders.Peer reviewe

    Sleep habits, academic performance, and the adolescent brain structure

    Get PDF
    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefrontal anterior cingulate cortex appears most tightly related to the adolescents' variations in sleep habits, as its volume correlates inversely with both weekend bedtime and wake up time, and also with poor school performance. These findings suggest that sleep habits, notably during the weekends, have an alarming link with both the structure of the adolescent brain and school performance, and thus highlight the need for informed interventions.Peer reviewe
    • …
    corecore